In the era of liquid biopsies, the reliable and cost-effective detection and screening of cancer biomarkers has become of fundamental importance, thus paving the way for the advancement of research in the field of point-of-care testing and the development of new methodologies and technologies. Indeed, the latter ones can help designing advanced diagnostic tools that can offer portability, ease of use with affordable production and operating costs. In this respect, impedance-based biosensing platforms might represent an attractive alternative. In this work, we describe a proof-of-concept study aimed at designing portable impedimetric biosensors for the monitoring of human urokinase-type plasminogen activator (h-uPA) cancer biomarker by employing small synthetic receptors. Aberrant levels of h-uPA were correlated with different types of cancers. Herein, we report the use of two bicyclic peptides (P2 and P3) which have been engineered to bind h-uPA with high affinity and exquisite specificity. The synthetic receptors were immobilized via biotin-streptavidin chemistry on the surface of commercial screen-printed electrodes. The impedimetric changes in the electrode/solution interface upon incubation of spiked h-uPA samples in the presence of a redox probe were followed via electrochemical impedance spectroscopy. The P3-based impedimetric assay showed the best outcomes in terms of dynamic range and linearity (0.01–1 μg mL−1) and sensitivity (LOD = 9 ng mL−1). To fully assess the performances of P3 over P2, and to compare the label-free architecture vs. labelled architecture, a voltammetric assay was also developed.

An Impedimetric Biosensing Strategy Based on Bicyclic Peptides as Bioreceptors for Monitoring huPA Cancer Biomarker

Moro, Giulia
;
Ferrari, Leonardo;Angelini, Alessandro;Polo, Federico
Supervision
2023-01-01

Abstract

In the era of liquid biopsies, the reliable and cost-effective detection and screening of cancer biomarkers has become of fundamental importance, thus paving the way for the advancement of research in the field of point-of-care testing and the development of new methodologies and technologies. Indeed, the latter ones can help designing advanced diagnostic tools that can offer portability, ease of use with affordable production and operating costs. In this respect, impedance-based biosensing platforms might represent an attractive alternative. In this work, we describe a proof-of-concept study aimed at designing portable impedimetric biosensors for the monitoring of human urokinase-type plasminogen activator (h-uPA) cancer biomarker by employing small synthetic receptors. Aberrant levels of h-uPA were correlated with different types of cancers. Herein, we report the use of two bicyclic peptides (P2 and P3) which have been engineered to bind h-uPA with high affinity and exquisite specificity. The synthetic receptors were immobilized via biotin-streptavidin chemistry on the surface of commercial screen-printed electrodes. The impedimetric changes in the electrode/solution interface upon incubation of spiked h-uPA samples in the presence of a redox probe were followed via electrochemical impedance spectroscopy. The P3-based impedimetric assay showed the best outcomes in terms of dynamic range and linearity (0.01–1 μg mL−1) and sensitivity (LOD = 9 ng mL−1). To fully assess the performances of P3 over P2, and to compare the label-free architecture vs. labelled architecture, a voltammetric assay was also developed.
2023
11
File in questo prodotto:
File Dimensione Formato  
An Impedimetric Biosensing Strategy Based on BicyclicPeptides as Bioreceptors for Monitoring h-uPA Cancer Biomarkers.pdf

accesso aperto

Descrizione: Manuscript
Tipologia: Versione dell'editore
Licenza: Creative commons
Dimensione 1.93 MB
Formato Adobe PDF
1.93 MB Adobe PDF Visualizza/Apri
chemosensors-2300408-supplementary.pdf

accesso aperto

Descrizione: Supporting Information
Tipologia: Versione dell'editore
Licenza: Accesso libero (no vincoli)
Dimensione 604.92 kB
Formato Adobe PDF
604.92 kB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/5018102
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact