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Abstract: In the era of liquid biopsies, the reliable and cost-effective detection and screening of
cancer biomarkers has become of fundamental importance, thus paving the way for the advancement
of research in the field of point-of-care testing and the development of new methodologies and
technologies. Indeed, the latter ones can help designing advanced diagnostic tools that can offer
portability, ease of use with affordable production and operating costs. In this respect, impedance-
based biosensing platforms might represent an attractive alternative. In this work, we describe a
proof-of-concept study aimed at designing portable impedimetric biosensors for the monitoring of
human urokinase-type plasminogen activator (h-uPA) cancer biomarker by employing small synthetic
receptors. Aberrant levels of h-uPA were correlated with different types of cancers. Herein, we report
the use of two bicyclic peptides (P2 and P3) which have been engineered to bind h-uPA with high
affinity and exquisite specificity. The synthetic receptors were immobilized via biotin-streptavidin
chemistry on the surface of commercial screen-printed electrodes. The impedimetric changes in the
electrode/solution interface upon incubation of spiked h-uPA samples in the presence of a redox
probe were followed via electrochemical impedance spectroscopy. The P3-based impedimetric assay
showed the best outcomes in terms of dynamic range and linearity (0.01–1 µg mL−1) and sensitivity
(LOD = 9 ng mL−1). To fully assess the performances of P3 over P2, and to compare the label-free
architecture vs. labelled architecture, a voltammetric assay was also developed.

Keywords: bicyclic peptide; liquid biopsy; point-of-care diagnostics; urokinase-type plasminogen
activator; cancer biomarker; electrochemical sensors

1. Introduction

In recent years, peptides have been proven to offer effective applications in medical
fields. They have been successfully employed in oncology, radio-theragnostic, drug delivery,
and vaccine formulation [1,2]. Moreover, peptides have become an effective and important
alternative to antibodies as bioreceptors in the development of novel diagnostic tools,
while providing several advantages owing to their stability, ease of synthesis, and the
engineering of their structure [3]. Among others, these properties help in decreasing the
steric hindrance of the receptors, thus allowing the increase in active sites to capture the
analytes of interest, leading to an enhanced sensitivity of the biosensing platforms toward
several bio- and non-bio molecules, such as heavy metals (lead, mercury, and cadmium),
DNA, peptides, cells, and proteins [4–6]. The application of peptides as bioreceptors to
detect target proteins and antibodies is well known, as witnessed by the high number
of methodologies and tools used in clinical diagnostics and medical surveys [7]. Some
examples include the detection of biomarkers for HIV [8], Alzheimer’s disease [9], and
different types of carcinomas [10–12], including breast cancer [13].
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A special class of peptides featuring a bicyclic-type structure have shown several
advantages over their linear counterparts in mimicking protein affinity and specificity
thanks to their enhanced conformational rigidity and metabolic stability. Apart from being
successfully employed as therapeutics and chemical probes in drug targeting and imag-
ing [14,15], bicyclic peptides have been recently exploited for the recognition and inhibition
of human urokinase-type plasminogen activator (h-uPA) [16–19]. The latter onehas gained
attention as a prognostic or diagnostic biomarker, as well as therapeutic protein [20]. h-uPA
is a secreted trypsin-like serine protease involved in various physiological processes such as
extracellular matrix homeostasis and tissue remodeling, as summarized in Figure 1 [21–23].
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Aberrant expression of h-uPA has been associated to several types of cancer, such
as breast, prostate, colorectal and lung cancer, as summarized in Table 1 [24,25]. With
respect to breast cancer, h-uPA is considered as relevant as the estrogen receptor (ER)
and the human epidermal growth factor receptor 2 (HER2) [26,27]. To improve the early
diagnose of breast cancer via h-uPA quantification, ELISA kits, such as FEMTELLETM

“uPA/PAI-1 ELISA” [28], have been designed and validated. This assay requires small
sample volumes (100 µL) with an established cut-off value of 3 ng mL−1, a limit of detection
of 0.025 ng mL−1 and an assay time of 2.5 days [28,29]. Apart from this commercial kit,
other biosensing strategies, mainly immunosensors, have been described for monitoring
h-uPA and even uPAR in serum [30–34] down to nM or even fM levels (see the comparison
reported in Table S1, Supplementary Materials). Despite their high performance, the clinical
applicability of these immunosensing strategies [30,31] is limited by the production costs
of their biorecognition elements, the antibodies, as discussed by Sfragano et al. [3]. In this
frame, peptides represent suitable alternatives to antibodies and nucleic acids, thanks to
their ease of synthesis, high affinity, and affordable production costs [35].

Recently, a large number of peptide binders specific for h-uPA have been described [16–19].
In particular a bicyclic peptide, namely UK18, showed high selectivity and inhibition
potency (Ki = 53 nM) [19]. Such binding properties have been attributed to its extended sur-
face of interaction with h-uPA (701 Å2), the numerous hydrogen bonds and complementary
charge interactions established, and its reduced conformational freedom [19].
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These findings drove the attention of researchers towards the possible integration of
such bicyclic peptides as bioreceptors in sensing platforms for cancer diagnostics. Very
recently, two biotinylated bicyclic peptides, namely P1 and P2, were designed to this
end [36]. P1 was derived from UK18, whereas P2 offered a slightly modified sequence to
outperform P1. They were employed as bioreceptors for h-uPA in an electrochemical assay.
The results were very promising in terms of reproducibility, selectivity, and sensitivity
with LODs of 105.8 ng mL−1 and 32.5 ng mL−1 for P1 and P2, respectively, which are close
to the nanomolar concentration range required for diagnostic purposes (see Table 1) [36].
Therefore, inspired by such positive results, a novel bicyclic peptide, P3, was designed and
synthesized. The results obtained in a fluorescence-based test in solution [37] have already
shown a higher binding affinity compared to the previous peptides P1 and P2, paving the
way to its use in biosensing as a candidate receptor for h-uPA.

Table 1. Clinical concentration ranges of h-uPA in human serum for some cancer forms.

Cancer Type [h-uPA] Range References

Breast cancer 0.21–16.06 ng mL−1 [38]
Soft-Tissue Sarcoma (STS) <4.76 ng mL−1 [39]

Bladder cancer <34.1 ng mL−1 [40]
Colorectal cancer 5.5–7.5 ng mL−1 [41]

Head and Neck Squamous Cell Carcinoma 0.21–1.92 ng mL−1 [42]
Pancreas cancer 1.2–7.6 ng mL−1 [43]

Chronic pancreatitis 0.9–5.4 ng mL−1 [44]
Liver cancer 0.2–14.7 ng mL−1 [45]

In this context, label-free biosensing platforms offer highly performing, cost-affordable,
user-friendly, and potentially scalable solutions for the detection of several types of can-
cer biomarkers [46–48], from proteins up to exosomes [49–51], and for therapeutic drug
monitoring [52]. Therefore, they are particularly appealing when developing biosensing
platforms enabling point-of-care (PoC) diagnostics. In devices of this kind, electrochemical
impedance spectroscopy (EIS) allows monitoring of the changes in the electrical properties
of the electrode–electrolyte interface when a small-amplitude sinusoidal potential wave
is applied on a DC potential biased electrode [53]. Depending on the architecture of the
EIS-based biosensors, it is possible to distinguish between nonfaradic capacitive assays,
where the changes in the capacitance are solely due to the properties of the interfaces, and
faradic assays, which require the addition of a redox probe that is free to diffuse in solution
or is confined at the electrode surface. In most faradic assays, EIS data, especially those
described by the Nyquist plot, are modelled using electrical equivalent circuits (EECs)
and correlate the concentration of the target analyte with the value of the double-layer
capacitance (Cdl) or the charge transfer resistance (Rct) [54]. Moreover, changes in the Bode
plots can also be considered in the design of EIS-based analytical strategies to simplify the
data elaboration process, thus avoiding time-consuming steps (i.e., Nyquist fitting with
EEC) [55]. In this last case, target-ligand interactions, both in solution and on a confined
surface, should be investigated with complementary analytical techniques to avoid mislead-
ing data interpretations (i.e., [55,56]). The advances in impedimetric sensors are leading
to the development of novel tools for liquid biopsies, especially for monitoring protein
biomarkers [54].

Herein, we describe a proof-of-concept study aimed at developing EIS-based portable
sensors, which can be used to monitor h-uPA, where P3 and its predecessor P2 serve as
the receptors immobilized on streptavidin-modified screen-printed electrodes (SPE), as
depicted in Figure 2. To fully assess the performances of P3 over P2, and to compare the
label-free architecture vs. the labelled one, the voltammetric assay already described for P1
and P2 [36] was also tested with P3.
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2. Materials and Methods
2.1. Materials and Reagents

The bicyclic peptides P2 and P3 were synthetized, characterized, and purified as
previously described [36]. Bicyclic peptides P2 and P3 have been recently patented [37].
Potassium hexacyanoferrate(II) trihydrate, tris(hydroxymethyl)aminomethane hydrochlo-
ride (tris-HCl or Trizma-HCl), diethanolamine (DEA), non-ionic polyoxyethylenesorbi-
tan monolaurate (Tween 20), Anti-Rabbit IgG-Alkaline phosphatase secondary antibody
(Ab2), 1-Naphtyl phosphate disodium salt (1-NPP) and biotin were purchased from Sigma-
Aldrich (Merck). Ethylendiaminotetraacetic acid (EDTA), magnesium chloride hexahy-
drate (MgCl2•6H2O) and monobasic potassium phosphate (KH2PO4) were purchased
from AppliChem (Biochemica). Potassium chloride (KCl) and potassium hexacyanofer-
rate(III) were purchased from VWR® BDH® Prolabo. Dihydrate dibasic sodium phosphate
(Na2HPO4•2H2O) and sodium chloride (NaCl) were purchased from Carlo Erba Reagents
S.r.l., while the Dynabeads® MyOne™ Streptavidin C1 magnetic microbeads and the
Urokinase Polyclonal primary Antibody (Ab1) were purchased from InvitrogenTM-Thermo
Fischer. Low molecular weight human-urokinase plasminogen activator (h-uPA) was
produced and purified as previously described [36]. Screen-Printed Carbon Electrodes
(SPCE; DRP-110) and Streptavidin-modified Screen-Printed Carbon Electrodes (Strep-SPCE;
DRP-110STR) were purchased from Metrohm DropSens. The buffer solutions used for the
voltametric assay were prepared as previously described [36].

2.2. Sandwich-Type Affinity Electrochemical Assay for h-uPA

All voltammetric measurements were performed with a portable potentiostat EmStat
Blue (PalmSens) and the data analysis was carried out with PSTrace5 software. Differential
Pulse Voltammetry (DPV) measurements were recorded with a step potential of 0.002 V, a
modulation amplitude of 0.002 V, and a scan rate of 0.05 Vs−1. For this assay, the biotiny-
lated peptides P2 and P3 were immobilized on the surface of commercial streptavidin-coated
magnetic beads (Strep-MBs) and stored at 4 ◦C. Each peptide-functionalized Strep-MB was
used in the voltammetric sandwich assay to test different h-uPA-spiked samples. The assay
was carried out following the previously described experimental procedure [36].

2.3. Impedimetric Assay for h-uPA

All EIS measurements were carried out using a SP-300 BioLogic potentiostat interfaced
with ECLab software with the following optimized parameters: a frequency range from
0.1 MHz to 0.1 Hz, 0.001 V of sinus amplitude, and a potential range from −10 V to +10 V. To
perform this assay, the Strep-SPCE were first rinsed with deionized water and dried with Ar.
The bare Strep-SPE were characterized by EIS in a 80 µL drop of a 1 mM of [Fe(CN)6]3−/4−

solution in PBS. Afterwards, a volume of 20 µL of 5 µg mL−1 of the biotinylated peptide P3
was immobilized on the surface of the Strep-SPCE working electrodes via dropcasting. The
P3-Strep-SPE were left for 30 min at 4 ◦C prior to being rinsed twice with 1 mL of 0.01%
of Tween 20 in PBS and twice with PBS only to remove P3 excess (washing steps). Prior to
incubating P3-Strep-SPE with h-uPA-spiked samples, the electrodes were characterized
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via EIS, as previously described. A volume of 20 µL of each h-uPA-spiked sample was
incubated at P3-Strep-SPE for 30 min at 4 ◦C. The electrodes were washed following the
washing steps described above. These steps were carried out for two consecutive rounds,
aiming to prevent the non-specific adsorption (NSA) of the target prior to recording the EIS
measurements [57,58]. Overall, the EIS-based assay required 1 h 45 min, approximately 1 h
for the preparation of the biosensors and 45 min for measuring the samples. The biosensing
platforms were freshly prepared or stored at 4 ◦C for maximum 2 days prior to use.

The calibration plot was obtained by subtracting the blank value of each measurement
and calculating the average and the associate error out of triplicates. All data elaboration
was performed with Origin 8.5 software and the fitting of EIS data was elaborated with
ECLab and ZView 2.

3. Results and Discussion
3.1. Comparing P3 and P2 Performance in Voltammetric Assay

The whole assembling procedure of the voltammetric biosensor employing the bi-
cyclic peptide has already been described in a recently published article [36]. The bicyclic
peptides P3 and P2 were specifically designed to target h-uPA and their inhibitory activity
was previously characterized. P3 inhibitory activity was found to be twice as good as
that of P2 [36].Despite the minimal variation in the amino-acid sequences (3 amino acids)
between P2 and P3, the increased inhibitory activity of P3 might result in higher sensi-
tivity in the electrochemical assay [36]. However, the performances of a bioreceptor in
solution or on a confined surface might dramatically change as already described for other
biomolecules [59]. To verify P3 binding affinity toward h-uPA on a confined surface, the
biotinylated peptide was first immobilized on the surface of streptavidin-functionalized
magnetic microbeads (Strep-MBs) and employed in a sandwich-type affinity electrochemi-
cal assay following the protocol previously optimized for P2 [36]. P3 is bound to the MBs via
biotin-streptavidin chemistry. In this preliminary study, P2 was tested with the aim of com-
paring the performance of the peptide-based assays in the same experimental conditions.
For all h-uPA concentrations tested, the assay with P3 showed a reliable response, thus
confirming the applicability of P3 as synthetic bioreceptor in an electrochemical sensing
platform. From the results summarized in Figure 3, it is possible to observe that, upon
incubation of P3-modified Strep-MBs with increasing concentrations of h-uPA (ranging
from 0.1 to 0.5 µg mL−1), higher current intensities were recorded. The P3-based assay
shows a higher value of the slope obtained from the linear regression of the calibration
plots, when compared to P2. Indeed, for P2 the response factor is 16.0 ± 0.9 µA mL µg−1,
while for P3 is 21.7 ± 1.3 µA mL µg−1. Therefore, the P3-based assay shows a higher
sensitivity compared to P2. The dynamic range of P3 is consistent with that of the P2-based
assay, as shown in Figure S1 [36].

3.2. EIS-Based Sensor Design and Characterization

In label-free impedance-based biosensors, EIS allows monitoring of the changes in
the electrical properties of the electrode–electrolyte interface when a small-amplitude
sinusoidal potential wave is applied to a DC potential biased electrode. As mentioned
above, in most faradic assays, Nyquist plots are considered and modelled using EECs and
correlate the target concentration with the variation of the Cdl or Rct values [54]. In this
study, the Nyquist plots and their fitting with EECs were applied to characterize the sensing
platform and describe the contributions given by the streptavidin layer, the biorecognition
layer (P3 and P2) and, as the last step, from the target protein h-uPA. To this end, commercial
Strep-SPCE was first activated and functionalized with the biotinylated peptides via biotin–
streptavidin interactions. After removing the excess of nonspecifically adsorbed bioreceptor,
the platform was incubated with increasing concentrations of h-uPA-spiked samples. All
steps were characterized via EIS in presence of 1 mM [Fe(CN6)]3−/4− in PBS, as described
in Section 2.3. In Figure 4a, the Nyquist plots obtained at the bare Strep-SPCE (green dots),
after P3 immobilization (red dots) and after incubation of 0.1 µg mL−1 of h-uPA (grey dots),
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are reported with the corresponding Bode plots in Figure 4b. The Nyquist plots were fitted
with the EECs reported in Figure 4c–e to acquire qualitative information regarding the
processes occurring at the different electrode/solution interfaces.
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The Nyquist plots for the Strep-SPCE were fitted with the Randles circuit including
additional elements. The Randles circuit allows the modelling of a bare SPCE/solution
interface where the migration of charge through the electrolyte solution is described by the
solution resistance (Rs); the constant phase element (CPE) accounts for the double-layer
formation at the electrode surface; the Rct describes the charge-transfer reaction; whereas the
Warburg impedance element (W), a constant phase element independent from the frequency,
accounts for the linear diffusion from the bulk of the solution. Often bare SPCEs show
relatively high Rct values (2.10 kΩ) which decrease once the electrode surface is modified
with a conductive protein [55,60] or a protein layer such as streptavidin (Rct = 0.25 kΩ),
as shown in Figure S3a–c in the Supplementary Materials. Here, additional CPEPL and
Rct PL can be ascribed to the streptavidin layer contributions in terms of resistance and
capacitance. After incubation of the bioreceptor and the target protein, CPEPL and Rct PL
values increase by about 40% compared to Strep-SPCE ones, suggesting that the formation
of the biorecognition layer and, in a second step, the recognition of h-uPA contribute
to the formation of a thicker, less conductive layer at the SPCE/solution interface (see
Figure S3a). The changes in the Rct PL values were found to increase linearly with increasing
concentrations of h-uPA (see Figure S3b).

It was observed that increasing concentrations of h-uPA resulted in increasing Rct PL
(see Figure 4c–e), thus confirming the possibility of determining h-uPA within a faradic
impedimetric sensing approach at the surface of the modified Strep-SPCE using P3 as the
biorecognition element. These changes can even be followed from the Bode plots, where
the peaks increase progressively in phase (ϕ) when P3 is immobilized on the electrode
surface and after protein h-uPA is incubated, as shown in Figure 4b. Finally, the incubation
of 0.1 µg mL−1 of the target protein leads to an additional interfacial layer at the SPCEs
resulting in a more complex EEC circuit with supplementary CPE/Rct in series and an
increased intensity in the process occurring at about log (ν) = 0.37 in the Bode Phase
plot. The EIS characterization confirmed the successful immobilization of the bioreceptor,
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the formation of a stable biorecognition layer and, indirectly, its capability to recognize
the target protein. Therefore, P3 can be further applied in EIS-based affinity assay for
the detection of h-uPA. Prior to proceeding with the preliminary tests addressing the
performance of this sensing strategies, the loading of the bioreceptor was optimized.
Impedimetric biosensors generally require a high concentration of small bioreceptors such
as peptides [48]. In our study, different loadings of P3 at Strep-SPCE were tested: 0.1, 1, 5,
10, 25 and 50 µg mL−1. To verify which one provides the highest analytical signal after the
interaction with the target protein, for each of them a spiked h-uPA sample (0.1 µg mL−1),
which is within the linear concentration range of the voltametric platform described in
Section 3.1 and in the previous article [36], was incubated. Figure 5 shows the values
obtained from the normalized phase (ϕ) signals, which derive from Bode plots peaks, along
with the blank related to each amount of P3 loaded.
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Figure 4. (a) Nyquist and (b) Bode plots for bare Strep-SPCE (green), P3-modified Strep-SPCE (red)
and P3-Strep-SPCE after incubation of 0.1 µgmL−1 of h-uPA (grey). The data of the Bode phase plot
are represented with circles, while the triangles correspond to the data of the Bode magnitude plot.
All the measurement were performed in 1 mM solution of [Fe(CN)6]3−/4−. EECs describing the
Nyquist plots reported in (a) and the response of an unmodified SPCE: (c) the processes occurring at
a bare SPCE/solution interface can be modelled with a standard Randles circuit, (d,e) modified EEC
describing the presence of a poorly conductive layer (protein layer, PL).

The minimum values of the process at log (ν) = 0.37 (as shown in Figure 4b) in the
presence/absence of h-uPA were extrapolated and normalized by subtracting and then
dividing the minimum values in the presence of the target protein by those in absence of it
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(blanks). We observed that the mid concentration, 5.0 µg mL−1, was the best performing in
terms of platform sensibility and peptide economy.
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Figure 5. Comparison of the response of the SPCE platform loaded with different concentrations of
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obtained on the triplicates.

3.3. Impedimetric Detection Strategy: Preliminary Data

The findings of the EIS characterization study suggested the possibility of correlating
the presence of h-uPA and its concentrations directly from the impedance signal, while
considering the changes in the Bode phase plot peaks instead of analyzing the fitted pa-
rameters obtained from the EEC. Subtracting the blank values, upon P3 immobilization on
Strep-SPCE, from the ones after h-uPA incubation (see Figure S4), a calibration curve could
be obtained as shown in Figure 6. In this case, a higher dynamic range (0.01–1 µg mL−1)
was investigated as shown in Figure 6a. The data were fitted using the four parameters
logistic (4PL) regression model, described by the following equation:

y = A2 +
A1 − A2

1 +
(

x
x0

)p (1)

where y is the analytical signal, A1 is the output at concentration zero of the analyte, A2
is the output at infinite analyte concentration, x is the analyte concentration, x0 is the
inflection point of the curve, and p is the slope factor. This model is a sigmoidal curve
with a linear region defined by two plateau regions related to the minimum and maximum
responses and it is often applied to the characterization of bioassays with wide dynamic
ranges [61,62].

To test the platform sensibility and its possible applicability to real samples, the lower
concentration range (0.01–0.1 µg mL−1) was investigated. In fact, the concentration ranges
of h-uPA in human serum, which are diagnostically relevant for breast cancer, fall within
this range [38]. The h-uPA concentration ranges that are clinically relevant are in the order
of nanograms, thus meaning that the sensitivity of the platform must reach this level to be
applied to real samples. The results from different sensing platforms both freshly prepared
and stored at 4 ◦C for 24h are reported in Figure 6b. The impedimetric platform responses
show a good linearity (R2 > 0.9997). The LOD calculated as the ratio between three times the
standard deviation of the blank and the curve slope [63] is equal to 0.009 µg mL−1 with a
LOQ of 0.030 µg mL−1. These values suggest that this platform has a higher sensitivity than
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the voltammetric one in simple matrices spiked with h-uPA. With further optimizations,
this platform could address clinical needs [64–66] and possibly be applied in the early
diagnose of breast cancer within a cost-affordable device that overcomes the limitations of
the immunosensing platforms previously described. The results of this proof-of-concept
study confirmed the potential applicability of bicyclic peptides in the impedimetric sensing
of protein cancer biomarkers.
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4. Conclusions

In the present research work, we described the use of a novel synthetic receptor,
based on a bicyclic peptide, to develop a biosensing platform aimed at detecting the
cancer biomarker h-uPA, which has gained attention in recent decades as prognostic or
diagnostic biomarker. In fact, aberrant levels of h-uPA have been associated with several
types of cancer, such as breast, prostate, colorectal and lung. Therefore, its detection is of
fundamental importance in oncology, as it can address several diagnostic needs.

The synthetic bicyclic peptide P3 was tested by adopting two methodologies:
voltammetric- and an impedimetric-based biosensing platforms. In the first one, recently
described by us [36], the use of P3 provided a higher sensitivity when compared with
previous synthetic bicyclic peptides P1 and P2 in the same range of concentrations.

The second methodology, instead, provided the novelty as the impedimetric biosens-
ing platform was developed by direct functionalization of a streptavidin-coated SPCE
with P3, and the signal vs. h-uPA concentration was obtained while considering the im-
pedimetric properties of the system from the growth of the Nyquist plot curves and the
peaks of the Bode plot, which derive from the increase in resistance upon exposition to
a higher concentration of h-uPA. The impedance-based assay was tested in a wide range
of h-uPA concentrations (0.01–1 µg mL−1) and showed good linearity with R2 = 0.9963, a
LOD = 9 ng mL−1 (LOQ of 30 ng mL−1). Our findings demonstrate an improvement when
compared to both the previous platform and to the use of the previous synthetic receptor P2.
Also, they witness the potential impact that synthetic receptors have on the development
of biosensing platforms, especially in relation to the design of impedimetric devices, which
are particularly appealing as they can enable the highly sought-after PoC diagnostic.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/chemosensors11040234/s1. Table S1. Comparison of biosensing
strategies developed recently for h-uPA detection spiked buffer solutions and biological fluids];
Figure S1. The response of P3-based assay in presence of h-uPA concentrations ranging 0.1 to
1 µg mL−1; Figure S2. Comparison between the calibration plots obtained with P2 (red circles) and

https://www.mdpi.com/article/10.3390/chemosensors11040234/s1
https://www.mdpi.com/article/10.3390/chemosensors11040234/s1
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P3 (black squares) as bioreceptors in this impedimetric-based assay. The calibration curve of P3-based
assay shows a gretated linear slope compared to the P2 one. These trends are consistent with the
ones observed for the voltammetric sandwich-type assay presented in Figure 3. The choice of P3
as bioreceptor provides a higher sensibility to the platform compared to P2. The error associated
with the response of the two platforms expressed as the standard deviation has the same order of
magnitude for both P2 and P3; Figure S3. (a) Comparison of the Rct and RctPL values of Strep-
SPCE, P3-Strep-SPCE, h-uPA-P3-Strep-SPCE. The values were obtained fitting the Nyquist plots in
Figure 4a with the EECs reported in Figure 4c–e. (b) Relative variation of RctPL upon incubation of
samples spiked with increasing concentrations of h-uPA. (c) Summary of the values of all resistance
components present in the EECs used to fit the EIS data; Figure S4. Bode phase peaks, subtracted from
the respective blanks, of the 6 h-uPA concentrations tested in the impedimetric P3-based platform.
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Abbreviations

List of Abbreviations and Acronyms
1-NPP 1-Naphtyl phosphate disodium salt
4PL Four parameters logistic
Ab1 Urokinase polyclonal primary antibody
Ab2 Anti-Rabbit IgG-Alkaline phosphatase secondary antibody
Cdl Double-layer capacitance
CPE Constant phase element
CPEPL Constant phase element associated with the protein layer
DC Direct current
DEA Diethanolamine
DPV Differential pulse voltammetry
EDTA Ethylendiaminotetraacetic acid
EEC Electric equivalent circuit
EIS Electrochemical impedance spectroscopy
ELISA Enzyme-linked immunosorbent assay
ER Estrogen receptor
FBS Fetal bovine serum
HER2 Human epidermal growth factor receptor 2
h-uPA Human-urokinase plasminogen activator
Ki Inhibitory affinity constant
LOD Limit of detection
LOQ Limit of quantification
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NSA Non-specific adsorption
P1 Bicyclic peptide P1
P2 Bicyclic peptide P2
P3 Bicyclic peptide P3
PBS Phosphate buffered saline
PL Protein layer
PoC Point-of-care
Rct Charge transfer resistance
RctPL Charge transfer resistance associated with the protein layer
Rs Solution resistance
SPCE Screen-printed carbon electrode
SPE Screen-printed electrode
Strep-SPCE Streptavidin-modified screen-printed carbon electrode
Strep-MBs Streptavidin-coated magnetic beads
tris-HCl or Trizma-HCl Tris(hydroxymethyl)aminomethane hydrochloride
Tween 20 Non-ionic polyoxyethylenesorbitan monolaurate
uPAR Urokinase plasminogen activator receptor
UK18 Bicyclic peptide UK18
W Warburg impedance element
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