An Impedimetric Biosensing Strategy Based on Bicyclic Peptides as Bioreceptors for Monitoring h-uPA Cancer Biomarkers

Giulia Moro 1,*,†,‡, Leonardo Ferrari 1,†, Alessandro Angelini 1,2 and Federico Polo 1,2,*

- ¹ Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, 30172 Venice, Italy; 860685@stud.unive.it (L.F.); alessandro.angelini@unive.it (A.A.)
- ² European Centre for Living Technology (ECLT), Ca' Bottacin, 30124 Venice, Italy
- * Correspondence: giulia.moro@unive.it (G.M.); federico.polo@unive.it (F.P.);
- + These authors contributed equally to this work.
- ‡ Current affiliation: Department of Pharmaceutical Sciences, University of Naples, Federico II, 80131 Naples, Italy.

Biorecognitio n layer components	Detection strategy	Matrices tested	Dynamic range (ng mL-1)	LOD (ng mL ⁻¹)	LOQ (ng mL-1)	Sample volumes (µL)	Assay time*	Reference
Bicyclic peptide	Impedimetric	PBS**	$10-1x10^2$	9	30	20	~ 45 min	Present
Bicyclic peptide	Votammetric (DPV)	PBS + Diluted human serum PBS +	0–5x10 ²	32.5	-	10	~ 1 h	[1]
Antibody	Fluorescence	Fetal Bovin Serum +	3.3–3.3x10 ³	3.3	-	20	~ 1 h	[2]
Antibody	Photoelectrochemic al	PBS + Human serum	1x10-4-1x103	3.3x10 ⁻⁵	-	30	~ 1 h	[3]
Aptamer	Impedimetric Voltammetric	PBS + Diluted human serum	3.3x10 ⁻² –33	3.3x10-2	-	-	~ 30 min	[4]

Table S1. Comparison of biosensing strategies developed recently for h-uPA detection spiked buffer solutions and biological fluids.

*Assay time is referred to the time of incubation of h-uPA and analysis. ** Phosphate buffer saline

Figure S1. The response of P3-based assay in presence of h-uPA concentrations ranging 0.1 to 1 μg mL^-1.

Figure S2. Comparison between the calibration plots obtained with P_2 (red circles) and P_3 (black squares) as bioreceptors in this impedimetric-based assay. The calibration curve of P_3 -based assay shows a gretated linear slope compared to P_2 one. This trends are consistent with the ones observed for the voltammetric sandwich type assay presented in **Figure 3**. The choice of P_3 as bioreceptor provides a higher sensibility to the platform compared to P_2 . The error associated to the response of the two platforms expressed as standard deviation has the same order of magnitude for both P_2 and P_3 .

Figure S3. (a) Comparison of the Rct and RctPL values of Strep-SPCE, P₃-Strep-SPCE, h-uPA-P3-Strep-SPCE. The values were obtained fitting the Nyquist plots in Figure 4a with the EECs in Figure 4c–e described in the main text. **(b)** Relative variation of Rct PL upon incubation of samples spiked with increasing concentration of h-uPA. **(c)** Summary of the values of all resistance components present in the EECs used to fit the EIS data.

Figure S4. Bode phase peaks, subtracted from the respective blanks, of the 6 h-uPA concentrations tested in the impedimetric P3-based platform.

References

- Moro, G.; Severin Sfragano, P.; Ghirardo, J.; Mazzocato, Y.; Angelini, A.; Palchetti, I.; Polo, F. Bicyclic Peptide-Based Assay for UPA Cancer Biomarker. *Biosens. Bioelectron.* 2022, 213, 114477. https://doi.org/10.1016/j.bios.2022.114477.
- Sharma, B.; Parajuli, P.; Podila, R. Rapid Detection of Urokinase Plasminogen Activator Using Flexible Paper-Based Graphene-Gold Platform. *Biointerphases* 2020, 15. https://doi.org/10.1116/1.5128889.
- Liu, X.P.; Chen, J.S.; Mao, C.J.; Niu, H.L.; Song, J.M.; Jin, B.K. A Label-Free Photoelectrochemical Biosensor for Urokinase-Type Plasminogen Activator Detection Based on a g-C3N4/CdS Nanocomposite. *Anal. Chim. Acta* 2018, 1025. https://doi.org/10.1016/j.aca.2018.04.051.
- Jarczewska, M.; Kékedy-Nagy, L.; Nielsen, J.S.; Campos, R.; Kjems, J.; Malinowska, E.; Ferapontova, E.E. Electroanalysis of PM-Levels of Urokinase Plasminogen Activator in Serum by Phosphorothioated RNA Aptamer. *Analyst* 2015, 140. https://doi.org/10.1039/c4an02354d.