We describe lossless compressed data structures for the colored de Bruijn graph (or c-dBG). Given a collection of reference sequences, a c-dBG can be essentially regarded as a map from k-mers to their color sets. The color set of a k-mer is the set of all identifiers, or colors, of the references that contain the k-mer. While these maps find countless applications in computational biology (e.g., basic query, reading mapping, abundance estimation, etc.), their memory usage represents a serious challenge for large-scale sequence indexing. Our solutions leverage on the intrinsic repetitiveness of the color sets when indexing large collections of related genomes. Hence, the described algorithms factorize the color sets into patterns that repeat across the entire collection and represent these patterns once instead of redundantly replicating their representation as would happen if the sets were encoded as atomic lists of integers. Experimental results across a range of datasets and query workloads show that these representations substantially improve over the space effectiveness of the best previous solutions (sometimes, even dramatically, yielding indexes that are smaller by an order of magnitude). Despite the space reduction, these indexes only moderately impact the efficiency of the queries compared to the fastest indexes.

Where the patterns are: repetition-aware compression for colored de Bruijn graphs

Alessio Campanelli;Giulio Ermanno Pibiri
;
2024-01-01

Abstract

We describe lossless compressed data structures for the colored de Bruijn graph (or c-dBG). Given a collection of reference sequences, a c-dBG can be essentially regarded as a map from k-mers to their color sets. The color set of a k-mer is the set of all identifiers, or colors, of the references that contain the k-mer. While these maps find countless applications in computational biology (e.g., basic query, reading mapping, abundance estimation, etc.), their memory usage represents a serious challenge for large-scale sequence indexing. Our solutions leverage on the intrinsic repetitiveness of the color sets when indexing large collections of related genomes. Hence, the described algorithms factorize the color sets into patterns that repeat across the entire collection and represent these patterns once instead of redundantly replicating their representation as would happen if the sets were encoded as atomic lists of integers. Experimental results across a range of datasets and query workloads show that these representations substantially improve over the space effectiveness of the best previous solutions (sometimes, even dramatically, yielding indexes that are smaller by an order of magnitude). Despite the space reduction, these indexes only moderately impact the efficiency of the queries compared to the fastest indexes.
File in questo prodotto:
File Dimensione Formato  
JCB2024.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Accesso libero (no vincoli)
Dimensione 3.17 MB
Formato Adobe PDF
3.17 MB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/5081931
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact