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Abstract. We describe lossless compressed data structures for the colored de Bruijn
graph (or, c-dBG). Given a collection of reference sequences, a ¢-dBG can be essen-
tially regarded as a map from k-mers to their color sets. The color set of a k-mer is the
set of all identifiers, or colors, of the references that contain the k-mer. While these
maps find countless applications in computational biology (e.g., basic query, read-
ing mapping, abundance estimation, etc.), their memory usage represents a serious
challenge for large-scale sequence indexing. Our solutions leverage on the intrinsic
repetitiveness of the color sets when indexing large collections of related genomes.
Hence, the described algorithms factorize the color sets into patterns that repeat
across the entire collection and represent these patterns once, instead of redundantly
replicating their representation as would happen if the sets were encoded as atomic
lists of integers. Experimental results across a range of datasets and query workloads
show that these representations substantially improve over the space effectiveness of
the best previous solutions (sometimes, even dramatically, yielding indexes that are
smaller by an order of magnitude). Despite the space reduction, these indexes only
moderately impact the efficiency of the queries compared to the fastest indexes.

Software. The implementation of the indexes used for all experiments in this work
is written in C++17 and is available at https://github.com/jermp/fulgor.

* A preliminary version of this article appeared in the proceedings of the 28-th International
Conference on Research in Computational Molecular Biology (Pibiri et al., 2024).
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1 Introduction

The colored de Bruijn graph (c-dBG) has become a fundamental tool used across several
areas of genomics and pangenomics. For example, it has been widely adopted by meth-
ods that perform read mapping or alignment, specifically with respect to RNA-seq and
metagenomic identification and abundance estimation (Liu et al., 2016; Bray et al., 2016;
Schaeffer et al., 2017; Almodaresi et al., 2018; Reppell and Novembre, 2018; Méklin et al.,
2021; Almodaresi et al., 2021; Skoufos et al., 2022); among methods that perform homology
assessment and mapping of genomes (Minkin and Medvedev, 2020a,b); for a variety of dif-
ferent tasks in pangenome analysis (Cleary et al., 2019; Manuweera et al., 2019; Dede and
Ohlebusch, 2020; Lees et al., 2020; Luhmann et al., 2021), and for storage and compression
of genomic data (Rahman et al., 2023). In most of these applications, a key requirement
of the underlying representation of the c-dBG is to be able to determine — with efficiency
being critical — the set of references (or “colors”) in which an individual k-mer appears.
This set is named the color set of a k-mer®. These motivations bring us to the following
problem formulation.

Problem 1 (Colored k-mer indexing). Let R = {Ry,..., Ry} be a collection of refer-
ences. Each reference R; is a string over the DNA alphabet X' = {A,C,G, T}. We want to
build a data structure (referred to as the index in the following) that allows us to retrieve
the set COLORSET(z) = {ilz € R;} as efficiently as possible for any k-mer z € X*. If the
k-mer = does not occur in any reference, we say that COLORSET(z) = @.

Of particular importance for biological analysis is the case where R is a pangenome.
Roughly speaking, a pangenome is a (large) set of genomes in a particular population, species
or closely-related phylogenetic group. Pangenomes have revolutionized DNA analysis by
providing a more comprehensive understanding of genetic diversity within a species (Marcus
et al., 2014; Baier et al., 2016). Unlike traditional reference genomes, which represent a single
individual or a small set of individuals, pangenomes incorporate genetic information from
multiple individuals within a species or group. This approach is particularly valuable because
it captures a wide range of genetic variations, including rare and unique sequences that may
be absent from any particular reference genome.

Contributions. The goal of this article is to propose compressed data structures to solve
Problem 1 focusing on the specific, important, application scenario where R is a pangenome.
We note, however, that the approaches described herein are general, and we expect them to
work well on any corpus of highly-related genomes, whether or not they formally constitute
a pangenome. To best exploit the properties of Problem 1, we capitalize on recent indexing
development for c-dBGs (Fan et al., 2024) that exploits an order-preserving dictionary of
k-mers (Pibiri, 2022, 2023) to map k-mers to color sets in succinct space. This efficient
mapping allows us to logically distinguish the problem of representing the dictionary of k-
mers from that of representing the color sets. In this article, we therefore focus entirely on
the latter problem.

5 In our previous work (Fan et al., 2024; Pibiri et al., 2024), we use a different nomenclature and
call “color” the set of references that contain a k-mer, so that each k-mer is logically labelled
with a single “color” in the graph. Under this view, a color is what is called a “color class”
by (Pandey et al., 2018). However, here we adopt the original terminology of (Igbal et al., 2012)
to avoid inconsistencies or misunderstandings and to accord with the prevailing nomenclature in
the related literature.



We present two different solutions for the problem of representing the color sets in com-
pressed space and explain how to combine them for even greater space reduction. These
solutions are both based on the paradigm of partitioning the color sets into patterns that
repeat across the whole collection of color sets. These patterns are encoded once in our
data structures, thus avoiding unnecessary redundancy for their representation. This is in
net contrast to previous methods in the literature, such as Fulgor (Fan et al., 2024) and
Themisto (Alanko et al., 2023b), that represent distinct color sets only once, but which
otherwise consider color sets as individual atomic integer lists and allow for repeated pat-
terns within the color sets. Methods such as Mantis (Almodaresi et al., 2020) and Meta-
Graph (Karasikov et al., 2020b) do consider shared patterns and implement distinct but
related forms of “differential” encoding, though the approaches are quite different from
those introduced here and seem to require a larger sacrifice in query speed.

After covering preliminary concepts on efficient indexing of ¢-dBGs in Section 2, we
review related work and the state of the art in Section 3. Section 4 describes our repetition-
aware compression algorithms for color sets. In Section 5 we present a simple framework to
build these compressed data structures. Section 6 presents experimental results to demon-
strate that exploiting the repetitiveness of color patterns grants remarkably better com-
pression effectiveness. As a result, the proposed solutions supersede all previous approaches
in the literature, as they essentially combine the space effectiveness of the most compact
methods with the query efficiency of the fastest solutions. This better efficiency comes at
the expense of a slower construction algorithm. However, we do not regard this as a serious
limiting aspect. We conclude in Section 7 where we also discuss some promising future work.

2 Preliminaries: modular indexing of colored de Bruijn graphs

In principle, Problem 1 could be solved using a classic data structure from information
retrieval — the inverted index (Pibiri and Venturini, 2021). The inverted index is the back-
bone of virtually any retrieval system, mapping “terms” (e.g., words in natural language,
or bag of words like n-grams, etc.) to the sorted lists of (the identifiers of) the documents
that contain such terms. These sorted lists are called inverted lists. In the context of this
problem, the indexed documents are the references {R;,..., Rx} in the collection R and
the terms of the inverted index are all the distinct k-mers of R. Using the notation from
Problem 1, it follows that COLORSET(z) is the inverted list of the term z. Let £ denote the
inverted index for R. The inverted index £ explicitly stores COLORSET(x) for each k-mer
z € R. The goal is to implement the map © — COLORSET(x) as efficiently as possible
in terms of both memory usage and query time. To this end, all the distinct k-mers of R
are stored in a dictionary D. Let n indicate the number of distinct k-mers in R. These
k-mers are stored losslessly in D. To be useful for this problem, the dictionary D should
be associative, that is: to implement the map © — COLORSET(z), D is required to support
the operation LOOKUP(z), which returns L if k-mer z ¢ D or a unique integer identifier in
[n] ={1,...,n}ifx € D.

Problem 1 can then be solved using these two data structures — D and £ — thanks
to the interplay between LOOKUP(z) and COLORSET(x): logically, the index stores the sets
{COLORSET(2)}, .7 in some compressed form, sorted by the value returned by LOOKUP(x).

To exploit at best the potential of this modular decomposition into D and L, it is essential
to rely on the specific properties of Problem 1. For example, we know that consecutive k-
mers share (k — 1)-length overlaps; also, k-mers that co-occur in the same set of references
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Fig. 1: In panel (a), an example ¢-dBG for k = 3 with three colors (1, 5, and 8) highlighted.
(In the figure, a k-mer and its reverse complement are considered as different k-mer for
ease of illustration. In practice, these are considered identical.) The unitigs of the graph
are colored according to the set of references they appear in. In panel (b), we schematically
illustrate the state-of-the-art index layout (as used in the Fulgor index (Fan et al., 2024))
assuming the c-dBG was built for N = 16 references, showing the modular composition of a
k-mer dictionary, D, and an inverted index, £. Note that unitigs are stored in D in color set
order (i.e., unitigs mapping to the same color set are placed consecutively in the dictionary),
thereby allowing a very efficgient mapping of k-mers to their distinct colors.

have the same color set. A useful, standard, formalism that captures these properties is the
so-called colored de Bruijn graph (c-dBG).

Let K be the set of all the distinct k-mers of R. The node-centric de Bruijn graph
(dBG) of R is a directed graph G(K, E) whose nodes are the k-mers in K. There is an
edge (u,v) € E if the (k — 1)-length suffix of u equals the (k — 1)-length prefix of v. Note
that the edge set E is implicitly defined by the set of nodes, and can therefore be omitted
from subsequent definitions (there is a one-to-one correspondence between a dBG and a
set of k-mers). We refer to k-mers and nodes in a dBG interchangeably. Likewise, a path
in a dBG spells the string obtained by concatenating together all the k-mers along the



path, without repeating the shared (k — 1)-length overlaps. In particular, unary (i.e., non-
branching) paths can be collapsed into single nodes spelling strings that are referred to as
unitigs. Let U = {uq, ..., um} be the set of unitigs of the graph. The dBG arising from this
compaction step is called the compacted dBG, and indicated with G(U).

The colored compacted dBG (c-dBG) is obtained by logically annotating each k-mer
x with its color set, COLORSET(x). While different conventions have been adopted in the
literature, here we assume that only non-branching paths with nodes having the same color
set are collapsed into unitigs. The unitigs of the c-dBG we consider in this work have the
following key properties.

Property 1. Unitigs spell references in R. Each distinct k-mer of R appears once, as sub-
string of some unitig of the c-dBG. By construction, each reference R; € R can
be spelled out by some tiling of the unitigs — an ordered sequence of unitig
occurrences that, when glued together (accounting for (k-1)-symbol overlap and
orientation), spell exactly R; (Fan et al., 2023). Joining together k-mers into
unitigs reduces their storage requirements and accelerates looking up k-mers in
consecutive order (Pibiri, 2022).

Property 2. Unitigs are monochromatic. The k-mers belonging to the same unitig u; all have
the same color set. We write x € u; to indicate that k-mer x is a sub-string of
the unitig u;. Thus, we shall use COLORSET(u;) to denote the color set of each
k-mer x € u;. This suggests that a single color set should be represented per
unitig, rather than for each k-mer.

Property 3. Unitigs co-occur. Distinct unitigs often have the same color set, i.e., they co-
occur in the same set of references, because they derive from conserved se-
quences in indexed references that are longer than the unitigs themselves. Here-
after, we indicate with z the number of distinct colors set C = {C4,...,C,}.
Note that z < m and that, in practice, there are almost always many more
unitigs than there are distinct color sets.

Figure la illustrates an example c-dBG with these properties. In the following sections, we
refer to a compacted ¢-dBG as G(U, C).

The modular indexing layout described in this section allows us to logically divide Prob-
lem 1 into two sub-problems: (1) that of representing k-mer sets under LOOKUP queries, and
(2) that of compressing the collection of color sets C = {C4, ..., C,}. This work specifically
targets the latter problem. Our solutions are presented in Section 4.

3 Related work

The data structures proposed in the literature to represent c-dBGs, and that fall under the
“color-aggregative” classification (Marchet et al., 2021), all provide different implementa-
tions of the modular indexing framework as described in Section 2. As such, they require two
data structures: (1) a k-mer dictionary and (2) an inverted index. The methods reviewed
below differ in the choice of the dictionary and the compression scheme for the inverted
index.

For example, Themisto (Alanko et al., 2023b) makes use of the spectral BWT (SBWT)
data structure (Alanko et al., 2023a) for its k-mer dictionary and an inverted index com-
pressed with different strategies based on the sparseness of the color sets (i.e., the ratio



|C;|/N). Mantis (Pandey et al., 2018; Almodaresi et al., 2020, 2022) makes use of the count-
ing quotient filter (Pandey et al., 2017) for the dictionary data structure, and in its most
space-efficient variant represents the color sets by deduplicating them and expressing them
differentially as edits performed along the branches of an approximate minimum spanning
tree over the color sets. MetaGraph (Karasikov et al., 2020b) uses the BOSS (Bowe et al.,
2012) data structure for the dictionary and exposes several general schemes to compress
metadata associated with k-mers (Karasikov et al., 2020b, 2022), which essentially constitute
an inverted index. Bifrost (Holley and Melsted, 2020), instead, uses a (dynamic) hash table
to store the set of unitigs and an inverted index compressed with Roaring bitmaps (Lemire
et al., 2018). The compact bit-sliced (COBS) index (Bingmann et al., 2019) can be consid-
ered as an approximate c-dBG in that the COLORSET(z) might contain false positives, i.e.,
spurious reference identifiers (but never false negatives). This is a consequence of building a
Bloom filter (Bloom, 1970) for each reference, filled with all the k-mers in the reference. The
Bloom filter matrix is stored in an inverted manner, and represents a collection of approxi-
mate color sets. Being approximate, this method completely avoids the space consumption
of the exact k-mer dictionary and the space is all due to the approximate color sets.

However, none of these solutions simultaneously exploit all three unitig properties listed
in Section 2 to achieve faster query time and better space effectiveness. More specifically,
Themisto disregards Property 1 as a direct consequence of using the SBWT data struc-
ture that internally arranges the k-mers in colezicographic order, and not in their order
of appearance in the unitigs. This translates to an overhead of logy(z) bits® per k-mer to
associate a k-mer to its color set (we recall that z indicates the number of distinct color sets
in our discussion). This consideration is also valid of the BOSS data structure, hence for
MetaGraph and the counting quotient filter data structure and hence for Mantis. Themisto
exploits Property 3 instead, by compressing only the set of the distinct color sets. Alanko
et al. also describe how it is possible in Themisto to reduce the space for the mapping from
k-mers to colors by spending log,(z) bits for only some k-mers (called core k-mers in their
work), while instead using 1 + o(1) bits per k-mer for all the others. However, this still
requires dedicated storage per-k-mer, thus failing to exploit Property 2. COBS does not
exploit any specific property, instead: unitigs are broken into their constituent k-mers and
indexed separately; looking up consecutive k-mers (most likely part of the same unitig) has
no locality of reference due to Bloom filter lookups; color sets are stored approximately and
partitioned into shards, so that a COLORSET(z) query has to combine several partial results
together.

State of the art. To the best of our knowledge, the only solution that exploits all the three
properties is the recently-introduced Fulgor index (Fan et al., 2024). The solution adopted
by Fulgor is to first map k-mers to unitigs using D, and then succinctly map unitigs to
their color sets. By composing these two mappings, Fulgor obtains an efficient map directly
from k-mers to their associated color sets. Refer to Figure 1b for an illustration of this
index. The composition is made possible by leveraging the order-preserving property of
its dictionary — SSHash (Pibiri, 2022, 2023) — which explicitly stores the set of unitigs
in any desired order. This property has some important implications. First, looking up
consecutive k-mers is cache-efficient since unitigs are stored contiguously in memory as
sequences of 2-bit characters. Second, if k-mer x occurs in unitig u;, the LOOKUP(z) query

6 For ease of notation, we write log, (z) instead of |log,(z —1)| + 1 for any # > 1 and assume that
log,(0) = 0.



of SSHash can efficiently determine the unitig identifier 7, allowing to map k-mers to unitigs.
Third, if unitigs are sorted in color set order, so that unitigs having the same color set are
consecutive, then mapping a unitig identifier ¢ to its color set identifier, COLORSET-ID (%),
can be implemented in as little as 1 + o(1) bits per unitig and in constant time. This is
achieved using a succinct RANK query, as explained in Fact 1 below.

Given a bitvector b[1..u], we let RANK; (b, %) be the number of bits set in b[1..7), for any
1 <4 < w. It is possible to answer RANK queries in O(1) using just o(u) bits on top of the
plain bitvector b (Jacobson, 1989).

Fact 1. Consider a sorted collection of u items where f < w are distinct. Call v; the i-th
item in the sorted order. Given an index 1 < ¢ < u, we can determine v; in O(1) without
storing all the u items explicitly, as follows. We keep the f distinct items in an array A[l..f]
and build a bitvector b[l..u] where: b[i] = 1 if and only if v; # v;4q for any 1 < i < u
and blu] = 1. (Note that b has exactly f bits set.) With b and A, we recover v; as Alp)
where p = RANK; (b,4) + 1. Apart from the space of A which is at most that of the original
collection because f < u, this solution spends 1 + o(1) bits per item.

We used Fact 1 to succinctly map unitigs to their color sets in Fulgor by letting v; =
COLORSET-ID(z) and the array A be C. We will use Fact 1 in this article as well.

Lastly, the color sets C = {C1,...,C,} themselves are compressed in Fulgor using three
different encodings based on the ratio |C;|/N. If |C;|/N < 1/4, then the set C; is considered
sparse and the differences between consecutive integers are computed and encoded with
Elias’s § code (Elias, 1975). If, instead, |C;|/N > 3/4, the set is considered very dense and
the complementary set [N] N C; is compressed using the method explained before. Lastly,
if 1/4 < |C;|/N < 3/4, the set is dense and represented as a bitvector of N bits where the
j-th bit is set if color 7 € C;. Note that each set C; is thus encoded individually from the
other sets in C.

4 Repetition-aware compression for colored de Bruijn graphs

When indexing large pangenomes, the space taken by the color sets C = {C1,...,C,}, evenin
compressed format, dominates the whole index space (Fan et al., 2024; Holley and Melsted,
2020; Alanko et al., 2023b). Efforts toward improving the memory usage of ¢-dBGs should
therefore be spent in devising better compression algorithms for the color sets. In this work,
we focus on exploiting the following crucial property that can enable substantially better
compression effectiveness: The gemomes in a pangenome are very similar. This, in turn,
implies that the color sets are also very similar (albeit distinct).

By “similar” sets we mean that they share many (potentially, very long) identical integer
sub-sequences. This property is not exploited if each set C; is compressed individually from
the other sets. For example, if set C; shares a long sub-sequence with C;, this sub-sequence
is actually represented twice in the index, which wastes space. We refer to such shared
sub-sequences as “patterns” in the following. Consider Figure 2 for some examples. The
pattern [3,5,9,11] repeats in Cy, Cs, and Cjy, hence it is represented redundantly three
times. The longer pattern [1,3,11,12,13, 14, 16] repeats twice instead. These examples are
instrumentally simple; yet, they suggest that the identification of such patterns across a large
collection, as well as the design of an effective compression mechanism for these patterns,
is not easy. A further complicating matter is that these patterns can repeat in many sets



C, = [3,4,5,9,10,11,13,15]

C, = [2,3,15]

Cs = 11,3,5,7,9,10,11]

Cs = I1,3,5,7,9,11,13]

Cs = [1,3,6,7,9,11,12,13,14,16]

Cs = [6,8]
c; = [1,3,8,11,12,13,14,16]
Cg = [12,16]

Fig.2: The color sets from Figure 1b where we highlight some “patterns” (i.e., repetitive
sub-sequences) that repeat across different sets, like [3,5,9,11] and [1, 3,11, 12,13, 14, 16].

(not just two or three), hence increasing the pangenome redundancy and aggravating the
memory usage of an index that encodes them redundantly in the many sets where they
appear.

To address this issue, we propose here two solutions based on partitioning the color sets
with the intent of factoring out repetitive patterns. Encoding such repetitive patterns once
clearly reduces the amount of redundancy in the representation, which improves the space
of the data structures. We explore the effectiveness of two different partitioning paradigms
which, for ease of visualization, we refer to as horizontal partitioning (Section 4.1) and ver-
tical partitioning (Section 4.2). Figure 3 shows an example of partitioning that we will refer
to in the following sections. In Section 4.3 we argue that these two partitioning paradigms
can be combined to improve compression even further.

Before presenting the details of our solutions, we first establish the following fact. Given
an integer ¢ > 1, let N' = {Nq,...,N;} be a partition of [q] = {1,...,q} of size r > 1.
Let an order between the elements {e;;} of each N; be fixed (for example, by sorting the
elements {e;;} in increasing order).

Fact 2. Any N induces a permutation 7 : [q] — [¢], defined as 7(e;;) := j + B;—1 where
Bi:=3>_ [Ny fori>0and By:=0,fori=1,...,rand j =1,...,|N|.

Consider the following example for ¢ = 10 and r = 3. Suppose N7 = {3,7,9}, Na =
{1,4}, and N3 = {2,5,6,8,10}. The boundaries B; are therefore By = 0, By = 3, By = 5,
and Bz = 10. The induced permutation 7 can be visualized by concatenating the sets N
from 7 =1 to 3 and assigning “new” identifiers, from 1 to ¢, in this concatenated order:

{379}{14}{256810}
new identifiers - 123 45 678910

which results in 7(3) =1, n(7) = 2, m(9) = 3, etc., that is 7 = [4,6,1,5,7,8,2,9,3,10].

4.1 Horizontal partitioning: representative and differential color sets

The first solution we present explores horizontal partitioning. In short, the general idea is
that of partitioning the sets in C into groups of similar sets (see Figure 3a for an example);



Cl = [3141519110111113115] Cl = [3I4I519I10111I13115]

C, = [2,3,15] C, = [2,3,15]
Cs; = [1,3,5,7,9,10,11] C; = [1,3,5,7,9,10,11]
¢y = [1,3,5,7,9,11,13] ¢y = [1,3,5,7,9,11,13]
Cs = [1,3,6,7,9,11,12,13,14,16] Cs = [1,3,6,7,9,11,12,13,14,16]
Cs = [6,8] Cs = 16,8]
c, = 11,3,8,11,12,13,14,16] c, = [1,3,8,11,12,13,14,16]
Cs = [12,16] Cs = [12,16]
(a) Three horizontal partitions (b) Four vertical partitions

Fig. 3: The color sets from Figure 1b, respectively partitioned horizontally (a) and vertically
(b). Intuitively, partitions of “similar” rows are created by horizontal partitioning; vice versa,
partitions of similar columns are created by vertical partitioning.

then, for each group, a representative color set is built and all sets in the group are encoded
via a differential set with respect to the representative one.

Definition. Let A be a partition of [z], of size r > 1, and let 7 be its corresponding
permutation as established by Fact 2. For each N, we build a set A; in some way that we
will explain shortly and represent the set C; as (4; AC;) for all j € NV;. Notation (X AY)
stands for the symmetric difference between the sets X and YV, and it is (X UY) \ (X NY).
The idea is that the set A; should include the most repetitive patterns that occur in the
sets of partition A, so that each difference (4; AC}) is small. Since A; should capture the
repetitiveness of AV;, it is named the representative color set of N;. The symmetric difference
(A; ACj) is instead called the differential color set of C; with respect to A;. We indicate with
A the set of all representative color sets. Note that |.A| = r as we have one representative per
partition. Similarly, we indicate with A the set of all differential color sets, where |A| = z
as we have one differential color set for each original set in C.

Both sets, A and A, are therefore made up of sequences of increasing integers that can
be compressed effectively using a plethora of different methods (Pibiri and Venturini, 2021).
We discuss implementation details in Section 6.

Compared to a ¢-dBG G(U,C), its differential-colored ¢-dBG (or, Dfc-dBG) variant is
the graph G(U, N, m, A, A) where the set of nodes, U, is the same as that of G but the sets

in C are factorized into A and A. We now illustrate an example of how the sets in C can be
modeled via A and A.

Example. Let us consider the r = 3 partitions from Figure 3a for the z = 8 color sets as
highlighted by different shades, i.e., N7 = {1,3,4}, No = {2,6}, and N3 = {5,7,8}. Assume
the following representative color sets, Ay, Ao, and As, are built.

A =11,3,5,7,9,10,11,13]
Ay =[2,3,6,8,15]
Az =[1,3,11,12,13, 14, 16]
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Fig.4: The Dfc-dBG layout derived from the color sets in Figure 1b. Importantly, note
that color sets are stored in the order given by the permutation 7 induced by the horizontal
partitioning. This allows mapping a color set identifier to its partition in very succinct space.
Note that also the unitigs in D are re-sorted following the permuted order of the color sets.

We then obtain the following differential color sets.

(AL ACH = [1,4,7,15] (A3 ACy) = [6,8] (A5 ACs) = [6,7, 9]
(A1 AC3) =[13] (A2 AGs) = [2,3,15] (A3 AC7) =8
(A, ACy) = [10] (A3 ACs) = [1,3,11,13,14]

Note how the pattern [3,5,9,11] shared by all the three sets Cy, C5, and Cy is now
encoded once in the representative set A; and implicitly encoded in each differential set
(A1 ACY), (A1 ACs), and (A1 ACy). Consider the pattern [1,3,11,12,13, 14, 16] shared by
C'5 and C7 for another example (in this case, the pattern is exactly equal to the representative
set Asg). If, instead, the representative color set does not include patterns that appear in
sufficiently many sets in its partition, then the representation is wasteful. This is the case,
in this example, for the set A,. In the worst case, when the intersection between A; and C;
is empty, then (4; AC;) = A; U}, which is more than storing the set C; itself.

To conclude, Figure 4 shows all the components of the Dfc-dBG from this example.
Importantly, note that the order of the sets {C1, ..., Cs} has been permuted according to 7
to efficiently determine the partition of any given color set identifier as to perform decoding
of the set (see the following discussion for more details).

Discussion. We now discuss the salient features of the introduced Dfc-dBG. All in all, the
Dfc-dBG saves space compared to the original ¢-dBG with only a minor slowdown when
performing a COLORSET(z) query.

1. As already explained, if the representative color sets include the most repetitive patterns
in their respective partitions, then the size of differential color sets is expected to be
small, thereby reducing the amount of integers that are represented in the index. This
clearly saves space compared to G(U,C) because the memory usage of the index is
proportional to the number of integers being encoded.



2. The order in which the differential color sets are stored in the index is not necessarily
1,...,z, as illustrated in the layout from Figure 1b. The order is instead obtained by
applying 7 to [z]. In our example from Figure 4, the permutation 7 is [1,4,2, 3,6, 5,7, 8],
hence the color sets C1,...,Cs are stored in the order Ci,Cs,Cy,Cs, Cg, Cs, C7, Cs,
given that w(1) = 1, n(3) = 2, n(4) = 3, etc. So, color sets belonging to the same
partition are placed consecutively by «. This clearly permits to determine the partition
a color belongs to in an efficient way, e.g., using Fact 1. Specifically, we use a binary
vector b[1..z] and let b[i{] = 1 if and only if ¢ is the position of the last color set of a
partition. Continuing our example, we have

| 01 C3 Cy | Co Cg | Cs Cr Cs |
b— 0 0 1 01 0 01

where b[3] = b[5] = b[8] = 1 because the third, the fifth, and the eighth color set
in the permuted order are the last in their respective partitions. To conclude, using
1 + o(1) extra bits per color, we can compute the partition 1 < p < r of color C; as
p = RANK; (b, 7(j)) + 1 in constant time as per Fact 1.

3. Lastly, it is efficient to decode C; from (A; ACj). By definition of symmetric set dif-
ference, it follows that C; = (4; A (A; ACj)). Hence decoding C; corresponds to com-
puting the symmetric difference between the representative color set and the differential
color set. This can be simply implemented in time linear in the size of the two sets. Note
that |C;| < |A;|+|(A; ACj)| (with equality holding only when A; = &), hence decoding
takes more time than just scanning the original color C;. This imposes some overhead
compared to any representation encoding each set individually. However, as we are going
to see in Section 6, this overhead is not much because decoding is cache-friendly.

The optimization problem. The effectiveness of the Dfc-dBG evidently depends on the
choice of the partition N, i.e., what color sets to cluster together, and the choice of the
representative for each partition N;. Intuitively, one would like to group similar color sets
together and let their shared patterns be included in their representative color set. On one
hand, the number of partitions, r, should not be too large to amortize the cost of the repre-
sentative color sets; on the other hand, smaller partitions better highlight the repetitiveness
of the patterns in the collection. In the following, let CoST(L) be the encoding cost of
the sorted list L according to some encoding method. We can formally state the optimiza-
tion problem faced by the Dfc-dBG representation as follows. We call it the minimum-cost
partition arrangement (MPA) problem for Dfc-dBG.

Problem 2 (MPA for Dfc-dBG). Let G(U,C) be the compacted ¢-dBG built from
the reference collection R = {Ry,...,Rn}, where |C| = z. Determine the partition N' =
{M,...,N;} of [2] for some 7 > 1 and the sets Ay,..., A, such that Y . CosT(4;) +
>iz1 2 jen, CosT(A; ACj) is minimum.

We suspect this problem is hard depending on the chosen encoding method. Instead, we

prove the following.

Theorem 1. Given a partition N' = {N7,..., N} of [2] of size r > 1, let CosT(L) = |L|
and
A; = {x € CjljeN; N ocei(x) > H./\/,|/2}}7 fori=1,...,r

where 1 < occ;(z) < |NV;| denotes the number of occurrences of the integer x in the color
sets of NVj. Then the cost >2;_; >0 c v, [(Ai ACy)| is minimum.



The rationale behind the choice CosT(L) = |L| is to minimize the number of integers
being encoded in the differential color sets, which is the most expensive component in the
Dfe-dBG.

Proof. By contradiction. Assume A; is optimal and there exists an integer x € A; such that
occi(x) < [|JNV;]/2]. This means that there are |NV;| —occ;(z) differential color sets containing
z. Let CosT(4;) =3, n, [(4i ACj)[. We can therefore remove z from A; to obtain a new
solution A; = A; \ {x} such that

CosT(A}) = CosT(A;) — (|N;] — ocei(z)) + occi(x)
= CosT(A;) — |N;| + 2 - ocei(x)
< CosT(4;)

where the last inequality holds because occ;(z) < [|N;]|/2]. Solution A has therefore a lower
cost than A;. This contradicts the initial assumption that A; is optimal. B

The representative color sets in Figure 4 and in all previous examples are built with
the strategy described in Theorem 1. Consider, for example, the color sets in the partition
N1 = {C1,C5,C4} from Figure 3a. In this case, |[N7]| = 3 and [|N1|/2] = 2, so any integer
appearing at least twice among those in C, Cs, and Cj, is included in A;. Specifically, we
have occi(1) = 2, oce1(3) = 3, occi(4) = 1, ocei(5) = 3, ete. It is easy to see that the only
two integers that cannot make it into A; are 4 and 15 since occy(4) = oce(15) =1 < 2. In
conclusion, we have 4; =[1,3,5,7,9,10,11,13].

The quantities oce;(x) can be computed by iterating through all color sets in C once and,
given that there are at most N distinct integers in each partition Nj;, the sets Ai,..., A,
are computed in a total of O, |Ci| +r - Nlog N) time.

4.2 Vertical partitioning: partial and meta color sets

In this section we present a second solution, based on vertical partitioning (see Figure 3b
for an example). Now, each color set in C is spelled by a list of references, or meta colors,
to smaller repetitive patterns that we call partial color sets.

Definition. Let N' = {N7,..., N, } be a partition of [N], of size r > 1, and refer to 7 as its
induced permutation as per Fact 2. We assume from now on that the N reference identifiers
and the integers in the sets of C have been permuted according to 7. After the permutation,
N determines a partition of R into r disjoint sets:

Ri={Ril0 =By <i< Bi},..., R, ={Ri|B,-1 <i< B, =N}
Let P; be the set
P = {{x—Bi—1|33 €CinN{Bi-1+1,Bi-1+2,...,Bi = 1,B;}}|VC; € C},

for i = 1,...,r. The elements {P;;} of the set P; are the partial color sets induced by the
partition N;. We indicate with P = {P,...,P,} the set of all partial color sets. In simple
words, P; is the set obtained by considering the distinct color sets only for the references
in the ¢-th partition R;, noting that — by construction — they comprise integers = such
that B;—1 < x < B;. The idea is that the set P = {Py,..., P} forms a dictionary of sub-
sequences (the partial color sets) that spell the original color sets C = {C1,...,C.}. Let us
now formally define this spelling.
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Fig.5: The Mac-dBG layout derived from the color sets in Figure 1b. Note that the partial
color set Py 4 = [1,2,3,4,5] shared between Cs and C7 is now represented once as a direct
consequence of partitioning, and indicated with the meta color (1,4) instead of replicating
the five integers it contains in both Cs and C%. The same consideration applies to other
shared sub-sequences.

Let C; € C be a color set. A meta color is an integer pair (7,7) indicating the sub-list
L := Cy[b..b + |P;;]|] if there exists 0 < b < |Cy| — |P;;| such that L[l] = P;[l] + B;_1, for
l=1,...,|Pj|. It follows that C; can be modeled as a list M; of at most r meta colors. We
indicate with M = {Mjy, ..., M,} the set of all meta color sets.

We have therefore obtained a representation of C that consists of the sets M and P.
These sets are, again, made up of integer sequences that can be further compressed. For the
experiments in Section 6, we will choose a suitable compression methods for these sets.

Given G(U,C), the meta-colored c-dBG (or, Mac-dBG) is the graph G(U, N, 7, P, M)
where the set of nodes, U, is the same as that of G but the color sets in C are represented
with the partial color sets P and the meta color sets M. We now illustrate an example.

Example. Let us consider the z = 8 color sets from Figure 1b, for N = 16. Let r = 4
and N7 = {1,12,13,14,16}, No = {3,5,9}, N5 = {7,11}, Ny = {2,4,6,8,10,15}, assuming
we use the natural order between the integers to determine an order between the elements
of each N;. Thus, we have B; = 5, By = 8, B3 = 10, and B4 = 16. The corresponding
permutation 7 is therefore [1,11,6,12,7,13,9,14,8,15,10,2,3,4,16,5]. Now we apply the
permutation 7 to each color set, obtaining the following permuted color sets (vertical bars
represent the partial color set boundaries By, Bs, Bs).

= [36,7,8/10]12, 15, 16] = [6]11,16]
= [1/6,7,8]9,10/15] 04 =[1,36,7,8/9,10]
=[1,2,3,4,56,89,10|13] Co = [13, 14]

07 =[1,2,3,4,5/6/10]14] Cs = [2,5]

For example, set C1, that before was [3,4,5,9,10,11,13,15] (see Figure 1b), now is

[7(3),m(4),n(5),7(9), 7(10), 7(11), m(13), 7(15)] = [6, 12, 7,8, 15, 10, 3, 16]



or [3,6,7,8,10,12,15,16] once sorted. The partial color sets are the distinct sub-sequences
in each partition of the permuted color sets. For example, P; is the set of the distinct sub-
sequences in partition 1, i.e., those comprising the integers x such that 0 < z < B; = 5.
Hence, we have five distinct partial color sets in partition 1, and these are [3], [1], [1, 3],
[1,2,3,4,5], and [2,5]. Importantly, note that from the integers in the partial color sets of
partition ¢ > 1 we can subtract the lower bound B;_;. For example, we can subtract B; =5
from the integers of [6,7,8], that is the partial color set used in the partition 2 of Cy, to
obtain [1, 2, 3]. Overall, we thus obtain that P comprises four partial color sets, as shown in
Figure 5. The figure also shows the rendering of the color sets C = {C4,...,Cs} via meta
color lists, i.e., how each color can be spelled by a proper concatenation of partial color sets.

Discussion. The Mac-dBG permits to encode the color sets in C into smaller space compared
to the original ¢-dBG and without compromising the efficiency of the COLORSET(x) query,
for the following reasons.

1. If N, = >°i_, |P;| is the total number of partial color sets, then each meta color (4, )
can be indicated with just log, (V) bits. Potentially long patterns, shared between
several color sets, are therefore encoded once in P and only referenced with log,(N,)
bits instead of redundantly replicating their representation. Since partial color sets are
encoded once, the total number of integers in P is at most that in the original C. In
practice, P is expected to contain a much smaller number of integers than C.

2. Each partial color set P;; can be encoded more succinctly because the permutation 7
guarantees that it only comprises integers lower-bounded by B;_1+1 and upper-bounded
by B;. Hence only log,(B; — B;—1) bits per integer are sufficient.

3. It is efficient to recover the original color set C} from the meta color set M;: for each
meta color (4, ) € My, sum B;_1 back to each decoded integer of P;;. Hence, we decode
strictly increasing integers. This is, again, a direct consequence of having permuted
the reference identifiers with 7. Observe that, in principle, the representation of the
color sets with partial/meta color sets could be described without any permutation m —
however, one would sacrifice space (for reason 2. above) and query time since decoding
a set would eventually need to sort the decoded integers. In conclusion, permuting the
reference identifiers with 7 is an extra degree of freedom that we can exploit to improve
index space and preserve query efficiency, noting that the correctness of the index is not
compromised when reference identifiers are re-assigned globally.

The optimization problem. As already noted in Section 4.1 for the Dfc-dBG, also the
effectiveness of the Mac-dBG crucially depends on the choice of the partition N' and upon
the order of the references within each partition as given by the permutation . There
is, in fact, an evident friction between the encoding costs of the partial and meta color
sets. Let N,, and N, = Y_I_, |P;| be the number of meta colors and partial color sets,
respectively. Since each meta color can be indicated with log,(N,,) bits, the meta color sets
cost N, logy(IN,,) bits overall. Instead, let COST(P;;, 7) be the cost (in bits) of the partial
color set P;; according to some encoding method. On one hand, we would like to select a
large value of r so that N, diminishes since each color set is partitioned into several, small,
partial color sets, thereby increasing the chances that each partition has many repeated
patterns. This will help in reducing the encoding cost for the partial color sets, i.e., the
quantity > ;_, El?i’l‘ CoST(P;j,m). On the other hand, a large value of r will yield larger

j=
meta color sets, i.e., will increase N,,. This, in turn, could erode the benefit of encoding



shared patterns and would require more time to read the meta color sets. The minimum-cost
partition arrangement (MPA) problem for Mac-dBG is therefore as follows.

Problem 3 (MPA for Mac-dBG). Let G(U,C) be the compacted ¢-dBG built from the
reference collection R = {Ry, ..., Ry }. Determine the partition N' = {Nq,..., N, } of [N] for
some r > 1 and permutation 7 : [N] — [N] such that N,, log,(Np)+> i, lezl‘ CosT(P;;, )
is minimum.

Depending upon the chosen encoding, smaller values of COST(P;;, 7) may be obtained
when the gaps between subsequent reference identifiers are minimized. Finding the permu-
tation 7w that minimizes the gaps between the identifiers over all partial color sets is an
instance of the bipartite minimum logarithmic arrangement (BIMLOGA) problem as intro-
duced by (Dhulipala et al., 2016) for the purpose of minimizing the cost of delta-encoded
lists in inverted indexes. The BIMLOGA problem is NP-hard (Dhulipala et al., 2016). We
note that BIMLOGA is a special case of MPA: that for » = 1 (one partition only) and
CoST(P;j, ) being the sum of the log, of the gaps between consecutive integers in the
permuted set P;;. It follows that also MPA is NP-hard under these constraints. This result
immediately suggests that it is unlikely that polynomial-time algorithms exist for solving
the MPA problem for the Mac-dBG.

4.3 Comparing and combining the two representations

Sections 4.1 and 4.2 introduce two solutions to the same problem; that of representing a
collection of sorted integer sets taking into account for patterns of integers that repeat across
the collection. These two solutions are very different, given that are based on orthogonal
partitioning paradigms. As it is not therefore immediately obvious which solution may yield
better results, we discuss them comparatively:

— The representative/differential color set approach can capture patterns that are formed
by colors not necessarily appearing in consecutive positions, whereas the approach via
partial/meta color sets necessarily needs to permute the reference identifiers to be ef-
fective. The use of permuted reference identifiers is, however, beneficial for compression
as it typically reduces the number of bits to encode the differences between consecutive
colors in a set.

— Both methods incur one extra level of indirection when decoding a color set C; compared
to a representation that encodes each set individually. In particular, up to r partial color
sets have to be accessed and decoded from their respective partitions; a representative
and differential color set must be scanned simultaneously to decode C;. Recall, however,
that while exactly |C;| integers are decoded to reconstruct C; using the partial/meta
color set representation, the encoding with representative/differential can instead decode
more than |C;| integers.

The two observations above suggest that the representation via meta/partial color sets
has a net advantage over that based on representative/differential color sets. However, we
argue in the following that an even improved representation can be achieved when these two
paradigms are combined together. In fact, note that both the set A of differential color sets
and the set P of partial color sets are, in turn, collections of sorted integer sets. Applying the
same encoding strategy recursively would therefore seem the most straightforward option
to consider. A recursive encoding makes little sense, however, as the hypothetical benefits



arising from finer partitioning should have been obtained during the “outer” and only par-
titioning step. We therefore consider the two scenarios where: (1) the set A is encoded with
meta/partial color sets, and (2) the set P is encoded with representative/differential color
sets. Albeit possible, the former combination is not promising as the differential color sets in
each partition are expected to be very different from each other rather than similar because
shared patterns are captured and encoded in the representative color sets only. (In other
words, if a shared pattern emerged in the differential color sets, then this pattern would
have been included in the representative color set, thus reducing the “similarity” between
the differential color sets.) This is also apparent from the small example from Figure 4. The
latter combination, instead, retains good potential as the partial color sets in a partition
tend to be similar as well. Consider the example in Figure 5.

In conclusion, we will also experiment in Section 6 with a combined representation where
the partial color sets are further compressed via representative/differential color sets.

5 The SCPO framework

In this section we illustrate a framework to build the compressed data structures described
in Section 4, the Dfc-dBG and the Mac-dBG. We then detail the specific instance of the
framework used for the experiments in this work.

As evident from their definitions, the crux of both data structures is how to perform
partitioning in an effective and efficient way. We recall that the input of partitioning is
different for the two data structures, i.e., the colors in C for the Dfc-dBG and the references in
R for the Mac-dBG. We therefore generically refer to the elements of the input as “objects”
in the following. The framework is a heuristic for the introduced MPA optimization problems
(Problem 2 and 3) and is based on the intuition that similar objects should be grouped
together in the same partition so as to increase the likeliness of having larger shared patterns.
It consists in the following four steps: (1) Sketching, (2) Clustering, (3) Partitioning, and
(4) Ordering. Hence, we call it SCPO framework.

1. Sketching. As a pre-processing step for the actual partitioning (step 2. below), we
first compute sketches of the objects to be partitioned. This makes the partitioning less-
memory intensive and faster as it operates on smaller objects (the sketches). Furthermore,
the sketches should preserve the essential information of the original objects, thus if two
sketches are similar then the original objects are similar as well.

For the Dfc-dBG, we simply build one sketch for each color set. The sketches for the
Mac-dBG, instead, are obtained as follows. Recall from Property 1 (Section 2) that each
reference R; € R can be spelled by a proper concatenation (a “tiling”) of the unitigs of the
underlying compacted dBG. If these unitigs are assigned unique identifiers by the chosen
dictionary data structure (e.g., SSHash (Pibiri, 2022, 2023)), it follows that each R; can be
seen as a list of unitig identifiers. These lists of unitig identifiers are obviously much shorter
and take less space than the original DNA references. We compute one sketch for each such
integer list.

2. Clustering. The sketches are fed as input of a clustering algorithm.

3. Partitioning. Once the clustering is done, each object in the input is labeled with the
cluster label of the corresponding sketch so that the partition N’ = {N7, ..., N,.} is uniquely
determined.



4. Ordering. Lastly, one may order the objects in each partition. While this might not
be relevant for the Dfc-dBG, it is definitely for the Mac-dBG because reference identifiers
can be permuted to reduce the encoding cost of the lists being represented (i.e., the partial
colors for the Mac-dBG). In fact, while the goal of partitioning is to factorize the color sets
in their repetitive patterns, the goal of the ordering step is to assign nearby identifiers to
colors that tend to co-occur in the color sets. This would mean to determine a permutation
7 that globally re-assign identifiers to references. As discussed in Section 4.2, this problem
was shown to be NP-hard but good heuristics exist (Dhulipala et al., 2016).

Specific framework instance. For the experiments in this work, we use the following
specific instance of the framework. We build hyper-log-log (Flajolet et al., 2007) sketches of
W = 210 bytes each. As a clustering algorithm, we use a divisive K-means approach that
does not need an a priori number of clusters to be supplied as input. At the beginning of the
algorithm, the whole input forms a single cluster that is recursively split into two clusters
until the mean squared error (MSE) between the sketches in the cluster and the cluster’s
centroid is not below a prescribed threshold (which we fix to 10% of the MSE at the start
of the algorithm). Let r be the number of found clusters. The complexity of the algorithm
depends on the topology of the binary tree representing the hierarchy of splits performed. Let
Z be the number of sketches to cluster. We recall that for the Dfe-dBG we have Z = z (the
number of distinct color sets) whereas Z = N for the Mac-dBG (the number of references).
In the worst case, the topology is completely unbalanced and the complexity is O(W Zr);
in the best case, the topology is perfectly balanced instead, for a cost of O(W Z logr). Note
that the worst-case bound is very pessimistic because, in practice, the formed clusters tend
to be reasonably well-balanced in size. Usually z > N, hence we expect the clustering step
performed for the Dfc-dBG to take more time and space in practice compared to that for
the Mac-dBG.

In the current version of the work, we did not perform any ordering of the references.
We leave the investigation of this opportunity as future work.

Lastly, in this section, it is worth noting that the approach we describe here for con-
structing our new compressed ¢-dBGs bears a conceptual resemblance to the phylogenetic
compression framework recently introduced by Bfinda et al. (Bfinda et al., 2024). At a high
level, this owes to the fact that both approaches take advantage of well-known concepts in
compression and information retrieval — namely that clustering and reordering are practical
and effective heuristics for boosting compression. However, while the approach by Bfinda
et al. focuses on clustering references so as to improve the construction of collections of dis-
parate dictionaries, we strictly focus on the effectiveness and efficiency of the index. As such,
our approach adopts a single k-mer dictionary and instead induces a logical partitioning over
the color sets. This layout allows to avoid having to record k-mers that appear in multiple
partitions more than once. As a result, while the phylogenetic compression framework aims
to scale to immense and highly-diverse collections of references, it anticipates a primarily
disk-based index in which partitions are loaded, decompressed, and searched for matches,
similarly to a database search (or similarly to BLAST (Altschul et al., 1990)). On the other
hand, the approaches we present here place a premium on query time, and aim to enable
in-memory indexing with interactive lookups for the purpose of fast read-mapping against
the index.



Table 1: Basic statistics for the tested collections, for k = 31.

E. Coli S. Enterica Gut bacteria

(EC) (SE) (GB)

Genomes 3,682 5,000 10,000 50,000 100,000 150,000 30,691
Distinct color sets (x10°) 5.59 269 424 1392 19.36  23.61 227.80
Integers in color sets (x107) 5.74 5.77 15.68 133.49 303.53 490.04 10.04
Avg. color set size (x10%) 1.03 2.14  3.70  9.69 15.68 20.76 0.04
k-mers in dBG (x10°) 170.65 104.69 239.88 806.23 1,018.69 1,194.44 13,936.86
Unitigs in dBG (x10°) 9.31 495 8.24 30.64 41.16 49.60 566.39

6 Experiments

In this section, we illustrate the results of experiments conducted to assess the performance
of the proposed ¢-dBG indexes, in comparison to the state-of-the-art methods reviewed in
Section 3. We fix the k-mer length to & = 31. All experiments were run on a machine
equipped with Intel Xeon Platinum 82761 CPUs (clocked at 2.20GHz), 500 GB of RAM,
and running Linux 4.15.0.

Datasets. We perform experiments using the following pangenomes of bacteria: 3,682 F.
Coli (EC) genomes from NCBI (Alanko, 2022); different collections of S. Enterica (SE)
genomes from the “661K” collection by (Blackwell et al., 2021). Specifically, we use col-
lections of different sizes, ranging from 5,000 to 150,000 genomes. We also test a much
more diverse collection of 30,691 genomes assembled from human gut samples (GB), orig-
inally published by (Hiseni et al., 2021). Table 1 reports some basic statistics about these
collections.

Note how for the GB dataset, being much more diverse, the average color set size (com-
puted as the ratio between the number of integers in the color sets and the number of
distinct color sets) is just = 44 integers — two order of magnitude smaller than that of the
other collections evaluated here.

Implementation details. Our methods from Section 4 are not bound to a specific com-
pression scheme nor a specific dictionary data structure, allowing one to obtain a spectrum
of different space/time trade-offs depending on choices made. Here, we use these new meth-
ods to compress the color sets of the Fulgor index (Fan et al., 2024) — the state-of-the-art
¢-dBG index and our own previous work (see Section 3). Like in Fulgor, we therefore use
the SSHash data structure (Pibiri, 2022, 2023) to represent the set of unitigs U and the
same mechanism to map unitigs to their color sets (see Fact 1). Very importantly, note
that these choices directly imply that our new indexes fully exploit the unitig properties
described in Section 2 as Fulgor does. We therefore experiment with the following indexes:
the differential-colored version of Fulgor, or “d-Fulgor” in the following; the meta-colored
version, or “m-Fulgor”; and the “md-Fulgor” representation, obtained by encoding with
representative/differential color sets each partial color set as explained in Section 4.3.
Both representative and differential color sets in d-Fulgor are simply encoded by taking
the gaps between consecutive integers and representing each gap with Elias’ § code. For the
partial color sets of m-Fulgor, we adopt the same compression methods as used to represent



the color sets in Fulgor (see the description at the end of Section 3). Each meta color list is
instead a list of logy(IV,)-bit integers, N, > 0 being the total number of partial color sets.

For the md-Fulgor index — our most succinct variant of Fulgor — we also use a dif-
ferent schemes for the meta colors to improve compression further. Recall from Section 4.2
that each meta color is an integer pair (4,j), where i indicates a partition and j indi-
cates the offset of the partial color set P;;. A list of meta colors My = [(i1, j1), (i2,72), -..]
can therefore be decomposed into the two integer lists [iy, 42, ...] and [j1, j2,], which we re-
ferred to as first and second components in the following. For example, the meta color list
Ms =1(1,4),(2,3),(3,2), (4,4)] from Figure 5 can be decomposed into its first component
[1,2,3,4] and its second component [4, 3,2, 4]. Note that while the first component is always
a sorted list of all elements are distinct, this is not true in general for the second component.
We thus use different encoding schemes for first and second components.

First, observe that — especially when the number of partitions is small — we expect a
small number of distinct first components, say f, compared to the total number of color sets,
z. Hence, it is convenient to keep the distinct first components in an array A[l..f] and, for
each meta color, specify the index of the array’s entry corresponding to the first component,
using log,(f) bits. Even better, we can sort the meta color lists by first component and
implement the succinct map via RANK explained in Fact 1. Thus, we use a bitvector b[1..z]
plus the array A[l..f] and recover the first component of the ¢-th meta color list as Alp]
where p = RANK; (F,t) + 1.

The second components, instead, are not so repetitive and, as noted above, the integers
are not necessarily distinct and increasing. Thus, we use the following variable-length encod-
ing: given the meta color (i, j), we encode the integer j using log,(|P;|) bits. For the example
meta color list M5 we have used above, we will encode its second component [4, 3, 2, 4] using
logy (|P1]) + logy(|P2]) + logs(|Ps|) + logy(|P4]) bits, that is logy(5) + log,(3) + logy(2) +
log,(6) =3+2+ 1+ 3 =09 bits.

Compared indexes. Throughout this section, we compare our c-dBG data structures —
d-Fulgor, m-Fulgor, and md-Fulgor — against the following indexes: the original Fulgor
index (Fan et al., 2024), Themisto (Alanko et al., 2023b), MetaGraph (Karasikov et al.,
2020a,b, 2022), and COBS (Bingmann et al., 2019). Links to the corresponding software
libraries can be found in the References. We use the C++ implementations from the respective
authors. All software (including ours) was compiled with gcc 11.1.0.

We provide some details on the tested tools. Both Themisto and COBS were built
under default parameters as suggested by the authors, that is: with option -d 20 for
Themisto for better space effectiveness; in COBS, we have shards of at most 1024 ref-
erences where each Bloom filter has a false positive rate of 0.3 and one hash function
to accelerate lookup operations. MetaGraph indexes were built with the relazed row-diff
BRWT data structure (Karasikov et al., 2020b) using a workflow available at https:
//github.com/theJasonFan/metagraph-workflows that we wrote with the input of the
MetaGraph authors.

6.1 Space effectiveness

Table 2 reports the total on disk index size for all of the methods evaluated. In particular,
Table 2a illustrates the effectiveness of the methods introduced in Section 4. Compared to
the Fulgor index that was previously shown to achieve the most desirable space/time trade-
off (Fan et al., 2024), our three methods, in order from left to right in the table, offer a
progressive reduction is space. The improvement in the representation of the color sets is
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Table 2: Index space in GB, broken down by space required for indexing the k-mers in the
dBG (SSHash for all Fulgor variants which we hence report only once, SBWT for Themisto,
and BOSS for MetaGraph) and data structures required to encode color sets and map k-
mers to the sets. In (a), we also indicate in parentheses the percentage of space taken by the
color sets with respect to the total. (For COBS, we just report the total index size which
coincides with the space of the approximate color sets.)

(a)
Dataset Fulgor d-Fulgor m-Fulgor md-Fulgor
dBG Color sets Total Color sets Total Color sets Total Color sets Total
EC 0.29 1.36 (83%) 1.65 0.45 (61%) 0.74 0.40 (58%) 0.69 0.24 (45%) 0.52
SE-5K 0.16 0.59 (79%) 0.75  0.20 (56%) 0.36 0.16 (50%) 0.32 0.11 (40%) 0.27
SE-10K 0.35 1.66 (83%) 2.01 0.48 ()?%‘/) 0.83 0.34 (49%) 0.70 0.22 (39%) 0.57
SE-50K 1.25 17.03 (93%) 18.29  4.31 (77%) b5.57 2.08 (()2‘/) 3.34 1.38 (52 ‘/) 2.64
SE-100K 1.71 40.71 (96%) 42.43  9.37 (84%) 11.10 3.75 (68%) 547 2.26 (57%) 3.98
SE-150K  2.02 68.61 (97%) 70.65 15.73 (89%) 17.77 5.27 (72%) 7.31 3.22 (61%) 5.26
GB 21.29 15.54 (42%) 36.83  7.51 (26%) 28.81 9.16 (30%) 30.46 6.19 (23%) 27.48
(b)
Dataset Themisto MetaGraph COBS
dBG Color sets Total dBG Color sets Total Total
EC 0.22 1.85 2.08 0.10 0.23 0.33 7.53
SE-5K 0.14 1.29 1.43  0.07 0.19 0.26 9.11
SE-10K 0.32 3.50 3.81 0.13 0.38 0.51 18.68
SE-50K 1.07 32.42 33.48 0.36 1.95 2.31 88.61
SE-100K 1.35 75.94 77.28  0.45 3.50 3.95 173.58
SE-150K 1.58 125.16 126.74 NA NA NA 265.49
GB 18.33 30.88 49.21  5.23 4.77 10.00 21.23

even more dramatic as the number of references in the dataset increases. In fact, as the size
of the collection grows and more repetitive patterns in the color sets appear, our repetition-
aware compression algorithms are able to better capture and reduce this redundancy. To
make a concrete example, on the larger SE-150K dataset, the space spent to represent the
color sets goes from 68.61 GB in Fulgor to:

— 15.73 GB in d-Fulgor (4.3x smaller space),
— 5.27 GB in m-Fulgor (13x smaller space),
— 3.22 GB in md-Fulgor, for a total reduction in space of more than 21.3x.

We also report in the table the percentage of space taken by the color sets relative to
the total size of the indexes (in gray shade). For the largest index compared to here, the
original Fulgor, the percentage illustrates how the space for the color sets tends to dominate
the whole representation space for c-dBGs. However, note how the percentage gradually
diminishes moving from the left to the right side of the table, i.e., as compression gradually



improves. In some instances, the reduction offered by our algorithms surprisingly makes
SSHash a “heavy” component of the index (which takes a constant fraction of the total
space across all Fulgor variants).

Remarkably, observe that d-Fulgor compresses better than m-Fulgor the color sets for
the GB pangenome (7.51 GB vs. 9.16 GB). This suggests that the method based on represen-
tative/differential color sets works better than the other one when the sets being represented
are small.

We now turn our attention to the comparison against the other state-of-the-art methods
evaluated in Table 2b. Note that the original Fulgor index already improves over the space
usage of Themisto, thus making even more apparent the reduction in space of our newly
introduced variants compared to Themisto. In fact, the only index whose size is competitive
to ours is MetaGraph in the relaxed row-diff BRWT configuration — at least in the cases
where we were able to construct the latter within the construction resource constraints.
However, as we observe in Section 6.2, unlike the other indexes evaluated, the on disk index
size MetaGraph is not representative of the working memory required for query when using
the (recommended and default) “batch” mode query. The color sets of md-Fulgor also mostly
require less space than those of MetaGraph.

The COBS index, despite being approximate, is consistently and considerably larger
than all of the other (exact) indexes, except for the the gut bacteria collection (GB). The
differing behavior on GB likely derives from the fact that the diversity of that data cause
the exact indexes to spend a considerable fraction of their total size on the representation of
the k-mer dictionary itself (e.g., 18 — 21.3 GB). However COBS, by design, eliminates this
component of the index entirely.

6.2 Query efficiency

Table 3 reports the query times of the indexes on a high-hit workload, e.g., when (more
than) 90% of the queries have a non-empty result. (Performance on a low-hit workload is
less informative since few k-mers would actually be found in the indexes, thus testing the
speed of negative k-mer lookups against the dictionary data structure, rather than the time
spent in processing the color sets.) The time we measure for this experiment is that for
performing pseudoalignment. There are several pseudoalignment algorithms (see Section 4
of (Fan et al., 2024) for an overview) that standard c-dBG data structures directly support;
here we focus on the full intersection algorithm (Alg. 1 from (Fan et al., 2024)). Given a
query string @, we consider it as a set of k-mers. Let K(Q) = {z € Q|COLORSET(z) # &}.
The full intersection method computes the intersection between the color sets of all the
k-mers in K(Q).

The queried reads consist of all FASTQ records in the first read file of the following ac-
cessions: SRR1928200 for EC, SRR801268 for SE, and ERR321482 for GB. These files contain
several million reads each. Timings are relative to a second run of each experiment, where
the indexes are loaded from the disk cache (which benefits the larger indexes more than the
smaller ones).

Consistent with previously reported results (Fan et al., 2024), we find that among ex-
isting indexes, Fulgor provides the fastest queries. The d-Fulgor variant results in being
approximately 2x slower than Fulgor but also offers much better compression effectiveness.
The slowdown is due to the differential color sets taking more time to be decoded than the
original color sets (i.e., linear time in the sum of the lengths of the representative and the
differential sets).



Vertical partitioning, instead, opens the possibility to achieve even faster query times
than a traditional c-dBG, due to the manner in which the partitions factorize the space
of references, if a two-level intersection algorithm is employed for pseudoalignment. First,
only meta color sets are intersected (thus, without any need to access the partial color sets)
to determine the partitions in common to all color sets being intersected. Then, only the
common partitions are considered. Two cases can happen for each partition. Case (1): the
meta color is the same for all color sets being intersected. In this case, the result of the
intersection is tmplicit and it suffices to decode the partial color set indicated by the meta
color. Case (2): the meta color is not the same, hence we have to compute the intersection
between different partial color sets. This optimization is clearly beneficial when the color
sets being intersected have very few partitions in common, or when they have identical meta
color sets. This is the reason why m-Fulgor does not not sacrifice query efficiency compared
to Fulgor, as expected, despite the significant reduction in space.

All Fulgor variants are instead equally efficient when indexing the GB dataset. The reason
is that, on average, very small color sets are being decoded and intersected.

Taking also into account the space of the indexes as discussed in Section 6.1, two main
conclusions emerge:

— The m-Fulgor variant dominates completely the original Fulgor index, as it is consider-
ably more space efficient and equally fast to query.

— The combination of vertical and horizontal partitioning in the md-Fulgor index, partially
mitigates the slowdown given by d-Fulgor. Overall, this combination makes the md-
Fulgor more than one order of magnitude smaller than the original Fulgor index with
a slowdown in query processing of less than 2x. We consider this space/time trade-off
very reasonable for the sake of indexing larger and larger c-dBGs in internal memory.
As we note below, md-Fulgor is still 2x faster than Themisto, the next fastest index in
the literature.

After Fulgor and m-Fulgor, we note that Themisto is the next fastest index, followed
by MetaGraph in batch query mode. Our most succinct but also slower version, the md-
Fulgor index, is still roughly 2x faster than Themisto. The query speeds of COBS and of
MetaGraph when not executed in batch mode are much lower than that of the other indexes,
in some cases being (more than) an order of magnitude slower.

Critically, as anticipated in Section 6.1, it is not the case with all indexes evaluated here
that the size of the index on disk is a good proxy for the memory required to actually query
the index. Specifically, for MetaGraph, when used in batch query mode (“B”), the required
memory can exceed the on-disk index size by up to 2 orders of magnitude, and in several
tests this resulted in the exhaustion of available memory and an inability to complete the
queries under the tested configuration. On the other hand, all Fulgor variants, Themisto,
and MetaGraph when not executed in batch mode (“NB”) require only a small constant
amount of working memory beyond the size of the index present on disk.

The COBS query is generally much slower than the other indexes, except for MetaGraph
in non-batch mode. This is likely because COBS partitions the input collection into shards of
references of roughly the same size prior to indexing. This permits to build Bloom filters of
different sizes: filters belonging to different shards have a different number of bits allocated,
hence saving space compared to the case where all references are represented with filters of
the same size. At query time, however, a k-mer lookup has to be resolved by every shard
and individual results combined.



Table 3: Total query time (elapsed time) and memory used during query (max. RSS) as
reported by /usr/bin/time -v, using 16 processing threads. The read-mapping output is
written to /dev/null for this experiment. We also report the mapping rate in percentage
(fraction of mapped read over the total number of queried reads). The query algorithm used
here is full-intersection. The “B” query mode of MetaGraph corresponds to the batch mode
(with default batch size); the “NB” corresponds to the non-batch query mode instead. In
red font we highlight the workloads exceeding the available memory (> 500 GB).

(a)
Dataset  Hit rate Fulgor d-Fulgor m-Fulgor md-Fulgor
mm:ss GB hmm:iss GB mm:iss GB  h:mm:ss GB
EC 98.99 2:10 1.67 5:20 0.78 2:30 0.73 5:00 0.57
SE-5K 89.49 1:10 0.80 2:00 0.41 1:16 0.37 1:48 0.32
SE-10K 89.71 2:20 2.06 4:30 0.90 2:28 0.77 3:34  0.65

SE-50K 91.25 12:00 18.24 29:00 5.82 13:10 3.64 22:25 295
SE-100K 91.41 24:00 42.20 1:02:00 11.58 27:00 6.08 50:00 4.62
SE-150K 91.52 37:00 70.55 1:38:00 18.51 41:30 8.29 1:15:00 6.28

GB 92.91 1:10 36.01 1.00 28.17 1:09 29.79 1.03 26.88
(b)
Dataset Hit rate Themisto MetaGraph-B MetaGraph-NB COBS
h:mm:ss GB  mm:ss GB  h:mm:ss GB  h:mm:ss GB
EC 98.99 3:40 2.46 22:00 30.44 1:05:41 0.40 45:11  34.93
SE-5K 89.49 3:50 1.82 14:14 36.54 20:32 0.33 38:34  41.93
SE-10K 89.71 7:35 4.16 28:15 92.18 43:40 0.61 1:01:14 84.20
SE-50K 91.25 42:02 33.14 NA NA 4:30:03 2.72 3:54:18 408.82
SE-100K 91.41 1:22:00 75.93 NA NA 9:40:06  4.82 8:07:29 522.56
SE-150K  91.52 2:00:13 124.27 NA NA NA NA 7:47:14 522.63
GB 92.91 1:20 48.47 28:55 15.86 22:05 9.91 34:45 225.57

6.3 Construction time and space

In Table 4 we consider the resources needed to build the indexes. Both d-Fulgor and m-
Fulgor are built from a Fulgor index to which we apply the SCPO framework (Section 5).
Similarly, the md-Fulgor is built from an m-Fulgor index. For this reason, the time reported
in Table 4 for these indexes has to be summed to the time needed to first build another
variant of Fulgor. The SCPO framework is single-threaded except for the construction and
clustering of the sketches.

We note that the m-Fulgor index is slower to build compared to a d-Fulgor index, despite
the fact that d-Fulgor re-builds a (permuted) SSHash dictionary and clusters many more
sketches. The reason lies in the different parameters that we used for the clustering of the
sketches. For d-Fulgor, we do not impose any constraint of the minimum size of a cluster,
hence allowing the algorithm to produce small and many clusters. On the contrary, the
number of clusters must be kept under control for the m-Fulgor variant as this directly



Table 4: Total index construction time (elapsed time) and GB of memory used during
construction (max. RSS), as reported by /usr/bin/time -v, using 48 processing threads.
The reported time includes the time to serialize the index on disk. In red font we highlight
the constructions exceeding the available memory (> 500 GB) and for which we had to cap
the maximum memory usage to 100 GB. The time for the three Fulgor variants is that for
running the SCPO construction, so it has to be summed to the time needed to first build
an index to partition: the time of both d-Fulgor and m-Fulgor must be summed to that of
Fulgor, and the time for md-Fulgor must be summed to that of m-Fulgor.

(a)

Dataset Fulgor d-Fulgor m-Fulgor md-Fulgor

h:mm GB hrmm GB himm GB hmm GB
EC 0:06 17 +0:12 11 +0:05 3 +0:14 4
SE-5K 0:04 13 +0:06 8 +0:04 1 +0:05 3

SE-10K 0:09 24 +0:09 14 40:10 3 +0:11 4
SE-50K 1:13 44 +0:43 105 +1:50 22 +0:30 13
SE-100K 2:56 T4 +1:20 207 4+4:37 48 4043 20
SE-150K 4:36 137 +1:55 305 4741 77 4055 25

GB 2:27 115 +410:00 182 +40:31 69 +T7:12 127
(b)
Dataset Themisto  MetaGraph COBS
hrmm GB hmm GB h:mm GB
EC 0:19 17 0:46 149 0:03 6
SE-5K 0:11 13 0:47 191 0:09 8

SE-10K 0:25 24 1:50 219 0:17 16
SE-50K 2:32 96  14:16 120 1:41 82
SE-100K 6:25 202  26:40 104 2:37 84
SE-150K  10:00 323 NA NA 4:54 159

GB 6:21 184  10:50 100 0:22 17

impacts on the length of the meta color lists (hence, their space usage). For this reason,
the clustering algorithm attempts to greedily re-assign sketches from small clusters to big
clusters, with the goal of reducing the number of clusters. The memory used during the
building of d-Fulgor is nonetheless much higher than that of m-Fulgor for the much larger
number of sketches that are being clustered. The md-Fulgor variant can instead be built
very economically from an existing m-Fulgor index.

Despite not being heavily engineered yet, the end-to-end construction of our indexes
is competitive to that of Themisto and much faster than that of MetaGraph. The fastest
indexes to build are Fulgor and COBS, the latter being even faster on the GB collection for
reasons already explained (i.e., it does not build any exact dictionary for the k-mers). The
tested MetaGraph configuration is significantly slower to build than all the other indexes;
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Fig.6: The same data from Table 3 but shown as space vs. time trade-off points, for two
example datasets.

for example, we were unable to build the index for SE-150K within 3 days and using 48
parallel threads (the construction also produced more than 1 TB of intermediate files).

7 Conclusions and future work

In this work, we have introduced new compressed representations for the colored de Bruijn
graph, where repetitive patterns within colors are encoded once as to improve the mem-
ory usage of pseudoalignment queries. More specifically, we have applied our compression
algorithms to represent the color sets as stored in the recently introduced Fulgor index
as it embodies the most favorable space vs. time trade-off, and we have introduced two
distinct, and largely orthogonal, approaches for factorizing and compressing redundant pat-
terns among the color sets. One scheme, d-Fulgor, is a “horizontal” compression method
which performs a representative/differential encoding of the color sets. The other scheme,
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m-Fulgor, is a “vertical” compression method which instead decomposes the color sets into
meta and partial color sets. Crucially, these methods exploit different characteristics for
compression, and so they can be combined to achieve an even greater compression of the
color sets. We show the effect of this combination with an index that we call md-Fulgor.

We perform an extensive experimental analysis across several datasets to assess these
different schemes and compare them against alternative representations of the ¢c-dBG. From
our analysis, we conclude that: (1) the meta-colored version of Fulgor, m-Fulgor, does not
introduce any new trade-off compared to the original Fulgor index but simply supersedes
it, given that it is considerably smaller and equally fast; (2) the meta-differential-colored
variant, md-Fulgor, is even more compact with a relatively minor query overhead compared
to Fulgor, especially compared to the space savings it provides.

Our representations provide a substantially-improved new reference point for the problem
of indexing c-dBGs in compressed space, as apparent from Figure 6. Our most succinct
index, md-Fulgor, is competitive withe the smallest variant of MetaGraph but an order of
magnitude faster to query; and up to 20x smaller than Themisto and still twice as fast. We
believe this improved performance has the potential of enabling large-scale color set queries
across a range of applications.

Future work will focus on different aspects of improving the index and relevant operations
upon it. First, we would like to accelerate pseudoalignment queries in general, and especially
for the md-Fulgor index. Second, we will provide a better engineered build pipeline for our
indexes. Third, we would like to explore the effect of approximately optimal ordering within
the partial color sets (i.e., the “O” step of the SCPO framework we have introduced). Lastly,
we plan to extend the indexing capabilities of Fulgor by annotating its graph with more
information, like k-mer abundances and their positions in the references.
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