Carbon dots (CDs) generally suffer from aggregation-induced fluorescence quenching effect in solid-state, which significantly limits their application in photoelectric devices. Due to this effect, it is a great challenge to achieve high-transparency and high-performance luminescent solar concentrators (LSCs) based on CDs. Here, the syn-thesis of organosilane-grafted carbon dots (Si-CDs) is rationally designed by hydrothermal method using anhy-drous citric acid, ethanolamine and KH-792 as the reaction precursors. The obtained Si-CDs can be uniformly dispersed in the polyvinyl alcohol (PVA) matrix through the dehydration condensation reaction and hydrogen bonding between the silicon hydroxyl group of Si-CDs and the hydroxyl group of PVA. Based on this property, Si-CDs/PVA thin-film LSCs (5 x 5 x 0.2 cm3) with ultrahigh CD loading (25 wt%) and high transparency can be fabricated, exhibiting excellent absorption in the UV spectral region and about 90 % transmission in the visible range. Furthermore, the power conversion efficiency (PCE) of the LSCs can reach 2.09 % under a standard solar light and shows excellent stability even over 12 weeks. This synthetic design is expected to be beneficial for future development of CD synthesis and paves the way for the development of CDs-based photoelectric devices.

High-loading of organosilane-grafted carbon dots in high-performance luminescent solar concentrators with ultrahigh transparency

Vomiero, Alberto
;
2023-01-01

Abstract

Carbon dots (CDs) generally suffer from aggregation-induced fluorescence quenching effect in solid-state, which significantly limits their application in photoelectric devices. Due to this effect, it is a great challenge to achieve high-transparency and high-performance luminescent solar concentrators (LSCs) based on CDs. Here, the syn-thesis of organosilane-grafted carbon dots (Si-CDs) is rationally designed by hydrothermal method using anhy-drous citric acid, ethanolamine and KH-792 as the reaction precursors. The obtained Si-CDs can be uniformly dispersed in the polyvinyl alcohol (PVA) matrix through the dehydration condensation reaction and hydrogen bonding between the silicon hydroxyl group of Si-CDs and the hydroxyl group of PVA. Based on this property, Si-CDs/PVA thin-film LSCs (5 x 5 x 0.2 cm3) with ultrahigh CD loading (25 wt%) and high transparency can be fabricated, exhibiting excellent absorption in the UV spectral region and about 90 % transmission in the visible range. Furthermore, the power conversion efficiency (PCE) of the LSCs can reach 2.09 % under a standard solar light and shows excellent stability even over 12 weeks. This synthetic design is expected to be beneficial for future development of CD synthesis and paves the way for the development of CDs-based photoelectric devices.
2023
115
File in questo prodotto:
File Dimensione Formato  
Xiao Nano Energy 2023 LSC CDs.pdf

accesso aperto

Tipologia: Versione dell'editore
Licenza: Accesso libero (no vincoli)
Dimensione 7.48 MB
Formato Adobe PDF
7.48 MB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/5065421
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 43
social impact