This paper introduces a bi-modal mechanism that leverages the way a smartphone user signs on the touchscreen and taps/enters any ”text-independent” 8-digit numbers to authenticate their identity. Pre- cisely, by extracting the trajectory of touch-points and touch-timing features during the enrollment stage, our scheme creates a digital identity of a user based on these behaviors. In the verification stage, our scheme compares the captured touch-points and touch-timing signatures with the digital identity of the user created during the enrollment stage. If the captured signatures match the digital identity within a certain tolerance, the user is authenticated. The choice of low-level events, such as signing on the screen and touch-typing, as biometric modalities makes our scheme easier to implement and adapt. We evaluated our approach using multiple classifiers, i.e., K-Nearest Neighbor, Support Vector Machine, and Deep Neural Network, and achieved a high True Acceptance Rate of 97.1% with a low False Acceptance Rate of just 0.2%, and an accuracy of 98.45% on a dataset of 20 volunteers. These results prove our scheme accurate in verifying the identity of users while also maintaining a low rate of false acceptance of unauthorized users.

2IN1: A Bimodal Behavioral Biometric-based User Authentication Scheme for Smartphones

Attaullah Buriro;Flaminia Luccio
2024-01-01

Abstract

This paper introduces a bi-modal mechanism that leverages the way a smartphone user signs on the touchscreen and taps/enters any ”text-independent” 8-digit numbers to authenticate their identity. Pre- cisely, by extracting the trajectory of touch-points and touch-timing features during the enrollment stage, our scheme creates a digital identity of a user based on these behaviors. In the verification stage, our scheme compares the captured touch-points and touch-timing signatures with the digital identity of the user created during the enrollment stage. If the captured signatures match the digital identity within a certain tolerance, the user is authenticated. The choice of low-level events, such as signing on the screen and touch-typing, as biometric modalities makes our scheme easier to implement and adapt. We evaluated our approach using multiple classifiers, i.e., K-Nearest Neighbor, Support Vector Machine, and Deep Neural Network, and achieved a high True Acceptance Rate of 97.1% with a low False Acceptance Rate of just 0.2%, and an accuracy of 98.45% on a dataset of 20 volunteers. These results prove our scheme accurate in verifying the identity of users while also maintaining a low rate of false acceptance of unauthorized users.
2024
ITASEC’24: The Italian Conference on CyberSecurity
File in questo prodotto:
File Dimensione Formato  
BuriroLuccio24.pdf

accesso aperto

Tipologia: Versione dell'editore
Licenza: Creative commons
Dimensione 600.47 kB
Formato Adobe PDF
600.47 kB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/5057508
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact