Small-to-moderate volcanic eruptions can lead to significant surface cooling when they occur clustered, as observed in recent decades. In this study, based on new high-resolution ice-core data from Greenland, we produce a new volcanic forcing data set that includes several small-to-moderate eruptions not included in prior reconstructions and investigate their climate impacts of the early 19th century through ensemble simulations with the Max Planck Institute Earth System Model. We find that clustered small-to-moderate eruptions produce significant additional global surface cooling (∼0.07 K) during the period 1812–1820, superposing with the cooling by large eruptions in 1809 (unidentified location) and 1815 (Tambora). This additional cooling helps explain the reconstructed long-lasting cooling after the large eruptions, but simulated regional impacts cannot be confirmed with reconstructions due to a low signal-to-noise ratio. This study highlights the importance of small-to-moderate eruptions for climate simulations as their impacts can be comparable with that of solar irradiance changes.

The Role of Small to Moderate Volcanic Eruptions in the Early 19th Century Climate

Jungclaus J.;Zanchettin D.;
2023-01-01

Abstract

Small-to-moderate volcanic eruptions can lead to significant surface cooling when they occur clustered, as observed in recent decades. In this study, based on new high-resolution ice-core data from Greenland, we produce a new volcanic forcing data set that includes several small-to-moderate eruptions not included in prior reconstructions and investigate their climate impacts of the early 19th century through ensemble simulations with the Max Planck Institute Earth System Model. We find that clustered small-to-moderate eruptions produce significant additional global surface cooling (∼0.07 K) during the period 1812–1820, superposing with the cooling by large eruptions in 1809 (unidentified location) and 1815 (Tambora). This additional cooling helps explain the reconstructed long-lasting cooling after the large eruptions, but simulated regional impacts cannot be confirmed with reconstructions due to a low signal-to-noise ratio. This study highlights the importance of small-to-moderate eruptions for climate simulations as their impacts can be comparable with that of solar irradiance changes.
2023
50
File in questo prodotto:
File Dimensione Formato  
2023_Fangetal_GRL_smallvolc.pdf

accesso aperto

Tipologia: Versione dell'editore
Licenza: Accesso libero (no vincoli)
Dimensione 7.07 MB
Formato Adobe PDF
7.07 MB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/5044528
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact