Cu2O is a narrow band gap material serving as an important candidate for photoelectrochemical hydrogen evolution reaction. However, the main challenge that hinders its practical exploitation is its poor photostability, due to its oxidation into CuO by photoexcited holes. Here, we thoroughly minimize the photo-oxidation of Cu2O nanowires by growing a thin layer of the TiO2 protective layer and an amorphous layer of the VOx cocatalyst using magnetron sputtering and atomic layer deposition, respectively. After optimization of the protective and the cocatalyst layers, the photoelectrode exhibits a current density of -2.46 mA/cm2 under simulated sunlight (100 mW/cm2) at 0.3 V versus reversible hydrogen electrode, and its performance is stable for an extended illumination time. The chemical stability and the good performance of the engineered photoelectrode demonstrate the potential of using earth-abundant materials as a light-harvesting device for solar hydrogen production.

Engineering Cu2O Nanowire Surfaces for Photoelectrochemical Hydrogen Evolution Reaction

Vomiero, A
2023-01-01

Abstract

Cu2O is a narrow band gap material serving as an important candidate for photoelectrochemical hydrogen evolution reaction. However, the main challenge that hinders its practical exploitation is its poor photostability, due to its oxidation into CuO by photoexcited holes. Here, we thoroughly minimize the photo-oxidation of Cu2O nanowires by growing a thin layer of the TiO2 protective layer and an amorphous layer of the VOx cocatalyst using magnetron sputtering and atomic layer deposition, respectively. After optimization of the protective and the cocatalyst layers, the photoelectrode exhibits a current density of -2.46 mA/cm2 under simulated sunlight (100 mW/cm2) at 0.3 V versus reversible hydrogen electrode, and its performance is stable for an extended illumination time. The chemical stability and the good performance of the engineered photoelectrode demonstrate the potential of using earth-abundant materials as a light-harvesting device for solar hydrogen production.
File in questo prodotto:
File Dimensione Formato  
2023 Getachew ACS Appl En Mater.pdf

accesso aperto

Tipologia: Versione dell'editore
Licenza: Accesso gratuito (solo visione)
Dimensione 5.11 MB
Formato Adobe PDF
5.11 MB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/5013163
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
social impact