The sluggish kinetics associated with the oxygen evolution reaction (OER) limits the sustainability of fuel production and chemical synthesis. Developing catalysts based on Earth abundant elements with a reasonable strategy could solve the challenge. Here, we present a heterostructure built from CrOx and CuS whose interface gives rise to the advent of new functionalities in catalytic activity. Using X-ray photoelectron and absorption spectroscopies, we identified the multiple oxidation states and low coordination number of Cr metal in CrOx-CuS heterostructure. Benefitting from these features, CrOx-CuS generates oxygen gas through water splitting with a low over potential of 190 mV vs RHE at a current density of 10 mA cm− 2. The catalyst shows no evident deactivation after a 36-hours operation in alkaline medium. The high catalytic activity, inspired by first principles calculations, and long-time durability make it one of the most effective OER electrocatalysts.

Interfacing CrOx and CuS for synergistically enhanced water oxidation catalysis

Tofik Ahmed Shifa
Conceptualization
;
Kassa Belay Ibrahim;Alberto Vomiero
2022-01-01

Abstract

The sluggish kinetics associated with the oxygen evolution reaction (OER) limits the sustainability of fuel production and chemical synthesis. Developing catalysts based on Earth abundant elements with a reasonable strategy could solve the challenge. Here, we present a heterostructure built from CrOx and CuS whose interface gives rise to the advent of new functionalities in catalytic activity. Using X-ray photoelectron and absorption spectroscopies, we identified the multiple oxidation states and low coordination number of Cr metal in CrOx-CuS heterostructure. Benefitting from these features, CrOx-CuS generates oxygen gas through water splitting with a low over potential of 190 mV vs RHE at a current density of 10 mA cm− 2. The catalyst shows no evident deactivation after a 36-hours operation in alkaline medium. The high catalytic activity, inspired by first principles calculations, and long-time durability make it one of the most effective OER electrocatalysts.
File in questo prodotto:
File Dimensione Formato  
Chem engn.pdf

non disponibili

Descrizione: paper
Tipologia: Versione dell'editore
Licenza: Accesso chiuso-personale
Dimensione 4.82 MB
Formato Adobe PDF
4.82 MB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/5008620
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
social impact