Luminescent solar concentrators (LSCs) are devices that can collect sunlight from a large area, concentrating it at the borders of the slab, to achieve efficient photovoltaic conversion when small area solar cells are placed at their edges, realizing building-integrated photovoltaics. Efficient luminophores in terms of high luminescence quantum yield are needed to obtain high-performance LSCs. A key point is the ability to engineer the Stokes shift (i.e. the difference between the maximum of the absorption and emission spectra), to minimize reabsorption processes. In this work, we report novel silicon-doped carbon nanodots (Si-CDs) with an ultrahigh quantum yield (QY) up to 92.3% by a simple hydrothermal method. Thin-film structured LSCs (5 × 5 × 0.2 cm3) with different concentrations of Si-CDs are prepared by dispersing the Si-CDs into polyvinyl pyrrolidone (PVP) matrix, and the optimal power conversion efficiency (PCE) of LSCs can be as high as 4.36%, which is nearly 2.5 times higher than that prepared with silicon-undoped CDs. This Si-CDs/PVP film LSC has a high QY of 80.5%. A large-area LSC (15 × 15 cm2) is also successfully fabricated, which possesses a PCE of 2.06% under natural sunlight irradiation (35 mW·cm−2), one of the best reported values for similar size LSCs. The efficient Si-CDs as luminescent substances for high-efficiency large-area LSCs will further give an impetus to the practical exploitation of LSCs.

Engineering high-emissive silicon-doped carbon nanodots towards efficient large-area luminescent solar concentrators

Vomiero, Alberto
2022

Abstract

Luminescent solar concentrators (LSCs) are devices that can collect sunlight from a large area, concentrating it at the borders of the slab, to achieve efficient photovoltaic conversion when small area solar cells are placed at their edges, realizing building-integrated photovoltaics. Efficient luminophores in terms of high luminescence quantum yield are needed to obtain high-performance LSCs. A key point is the ability to engineer the Stokes shift (i.e. the difference between the maximum of the absorption and emission spectra), to minimize reabsorption processes. In this work, we report novel silicon-doped carbon nanodots (Si-CDs) with an ultrahigh quantum yield (QY) up to 92.3% by a simple hydrothermal method. Thin-film structured LSCs (5 × 5 × 0.2 cm3) with different concentrations of Si-CDs are prepared by dispersing the Si-CDs into polyvinyl pyrrolidone (PVP) matrix, and the optimal power conversion efficiency (PCE) of LSCs can be as high as 4.36%, which is nearly 2.5 times higher than that prepared with silicon-undoped CDs. This Si-CDs/PVP film LSC has a high QY of 80.5%. A large-area LSC (15 × 15 cm2) is also successfully fabricated, which possesses a PCE of 2.06% under natural sunlight irradiation (35 mW·cm−2), one of the best reported values for similar size LSCs. The efficient Si-CDs as luminescent substances for high-efficiency large-area LSCs will further give an impetus to the practical exploitation of LSCs.
File in questo prodotto:
File Dimensione Formato  
2022 Gong Nano Energy 101 (2022) 107617.pdf

accesso aperto

Tipologia: Versione dell'editore
Licenza: Accesso libero (no vincoli)
Dimensione 4.42 MB
Formato Adobe PDF
4.42 MB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/10278/5000652
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact