The brewery industry annually produces huge amounts of byproducts that represent an underutilized, yet valuable, source of biobased compounds. In this contribution, the two major beer wastes, that is, spent grains and spent yeasts, have been transformed into carbon dots (CDs) by a simple, scalable, and ecofriendly hydrothermal approach. The prepared CDs have been characterized from the chemical, morphological, and optical points of view, highlighting a high level of N-doping, because of the chemical composition of the starting material rich in proteins, photoluminescence emission centered at 420 nm, and lifetime in the range of 5.5-7.5 ns. With the aim of producing a reusable catalytic system for wastewater treatment, CDs have been entrapped into a polyvinyl alcohol matrix and tested for their dye removal ability. The results demonstrate that methylene blue can be efficiently adsorbed from water solutions into the composite hydrogel and subsequently fully degraded by UV irradiation.
N-Doped Carbon Dot Hydrogels from Brewing Waste for Photocatalytic Wastewater Treatment
Cailotto S.;Massari D.;Gigli M.
Membro del Collaboration Group
;Campalani C.;Vomiero A.;Selva M.;Perosa A.;Crestini C.
2022-01-01
Abstract
The brewery industry annually produces huge amounts of byproducts that represent an underutilized, yet valuable, source of biobased compounds. In this contribution, the two major beer wastes, that is, spent grains and spent yeasts, have been transformed into carbon dots (CDs) by a simple, scalable, and ecofriendly hydrothermal approach. The prepared CDs have been characterized from the chemical, morphological, and optical points of view, highlighting a high level of N-doping, because of the chemical composition of the starting material rich in proteins, photoluminescence emission centered at 420 nm, and lifetime in the range of 5.5-7.5 ns. With the aim of producing a reusable catalytic system for wastewater treatment, CDs have been entrapped into a polyvinyl alcohol matrix and tested for their dye removal ability. The results demonstrate that methylene blue can be efficiently adsorbed from water solutions into the composite hydrogel and subsequently fully degraded by UV irradiation.File | Dimensione | Formato | |
---|---|---|---|
M.Gigli (2022 - ACS Omega) - N‑Doped Carbon Dot Hydrogels from Brewing Waste for photocatalytic wastewater treatment.pdf
accesso aperto
Tipologia:
Versione dell'editore
Licenza:
Accesso libero (no vincoli)
Dimensione
3.81 MB
Formato
Adobe PDF
|
3.81 MB | Adobe PDF | Visualizza/Apri |
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.