Large datasets with irregularly spatial (or spatio-temporal) locations are difficult to handle in many applications of Gaussian random fields, such as maxi- mum likelihood estimation (MLE) and prediction. We aim to approximate covariance functions in a format that facilitates the computation of MLE and prediction with very large datasets using a hierarchical matrix approach. We present a numerical study where we compare this approach with the covariance tapering method.

Application of hierarchical matrices in spatial statistics

Gorshechnikova, Anastasiia
;
Gaetan ,Carlo
2021-01-01

Abstract

Large datasets with irregularly spatial (or spatio-temporal) locations are difficult to handle in many applications of Gaussian random fields, such as maxi- mum likelihood estimation (MLE) and prediction. We aim to approximate covariance functions in a format that facilitates the computation of MLE and prediction with very large datasets using a hierarchical matrix approach. We present a numerical study where we compare this approach with the covariance tapering method.
2021
Book of short papers - SIS 2021
File in questo prodotto:
File Dimensione Formato  
gg_sis_2021.pdf

accesso aperto

Tipologia: Versione dell'editore
Licenza: Accesso gratuito (solo visione)
Dimensione 149.74 kB
Formato Adobe PDF
149.74 kB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3745904
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact