Application of hierarchical matrices in spatial
statistics

Applicazione di matrici gerarchiche nella statistica
spaziale
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Abstract Large datasets with irregularly spatial (or spatio-temporal) locations are
difficult to handle in many applications of Gaussian random fields such as maxi-
mum likelihood estimation (MLE) and prediction. We aim to approximate covari-
ance functions in a format that facilitates the computation of MLE and prediction
with very large datasets using a hierarchical matrix approach. We present a numeri-
cal study where we compare this approach with the covariance tapering method.

Abstract Grandi dataset contenenti posizioni spazio-temporali disposte in maniera
irregolare sono molto difficili da trattare in parecchie applicazioni dei campi
aleatori gaussiani, quali la stima di massima verosimiglianza o la previsione. Il
nostro obiettivo e di approssimare le funzioni di covarianza in un formato che fa-
ciliti il calcolo della stima di massima verosimiglianza e della previsione in caso di
dataset molto grandi si basa sull’uso di matrici gerarchiche. Un esempio numerico
in cui si confronta il metodo proposto con il ’tapering’ viene presentato.

Key words: computational methods, hierarchical matrices, large datasets, covari-
ance matrices

1 Introduction

Large data sets are common in environmental sciences where data are often ob-
served at a large number of spatial locations and at different temporal intervals.
Therefore, computational and modeling challenges arise which were labeled by as
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“big N problem”. The exact computation of the likelihood of a Gaussian Random
Field (GRF) observed at N irregularly sited locations generally requires O(N?) float-
ing point operations and O(N?) memory [3].

Consider a vector Z of N observations from a GRF {Z(x)} defined over a domain
indexed by x, where x denotes either a spatial x : s € R or spatio-temporal domain of
observations x : (s,¢) € RY x R. Without loss of generality we consider a zero-mean
GREF. Considering parametric covariance function with the vector of the unknown
p- dimensional parameters 8 € ® C RP, the covariance function c(x) := ¢(x; 0)
depends on unknown parameter 6. We make statistical inference with respect to 0
based on the Gaussian log-likelihood

N 1 1
L(6) = - log2m — - log|Cz| — 527C;'Z (1)

where N is the sample size and Cz is the covariance matrix of Z. As can be seen
from (1), to make an inference on the unknown parameter 0 the exact computation
of the log-likelihood requires a computation of the determinant of the covariance
matrix |Cz| as well as its inverse C,;' which both require O(N?) operations.

A similar computational burden is involved in evaluating the best linear unbiased
prediction (BLUP), at an unobserved location x( defined as follows

Z(x0) = c(x0) ' C,'Z, 2)

where ¢(xg) = [c¢(x0,X1),--,c(x0,xy)] is covariance vector formed based on a new
location xo and Cz = C(x;,x;).

A comparison of current methods to tackle this computational problem is con-
tained in [3]. For instance, in the covariance tapering approach [4] the covariance
matrices are multiplied element-wise by a sparse correlation matrix which results
in another positive definite function with a compact support, i.e. Cr = Cz o T(9),
where T (0) is a compactly supported correlation function which is identically zero
whenever ||s —s'|| > & with s,s' € R? and taper (or cut-off distance) 8. Therefore

N 1 1
L(0) = —Elog2ﬂ—510g|CT|—5ZTC;IZ 3)

is the tapered likelihood, where Cr = Cz o T(0).

The covariance tapering method may not be effective in accounting for spatial
dependence with long range dependence thereby sacrificing some precision. Also
it is not straightforward how to choose the distance to taper off. In this work we
present an approach based on the approximation of covariance functions by hier-
archical matrices (or shortly .77-matrices). Focusing on the numerical analysis, the
method of .77-matrix was exploited by [5] for MLE estimation. We extend this work
by adapting the regularity conditions, performing kriging prediction on a simulated
dataset and comparing this technique with covariance tapering in terms of both com-
putational and statistical efficiencies.
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2 Hierarchical matrices

The idea behind .77-matrices is to use a low-rank approximation of the blocks of
a covariance matrix which are located far from the diagonal entries. To obtain the
structure of a covariance matrix with the off-diagonal blocks C]g]ock approximated in
a low-rank k format, an index i € I from the index set I C N is firstly assigned to
each data location x; € RY. The hierarchical structure of a matrix is then obtained
by partitioning the index set / into subsets or, equivalently, associated data locations
x; into clusters. This is required in order to obtain matrix blocks which further can
be factored, such that a low-rank block C"glock is characterised by the rank k << N.
These all are crucial steps required to compress data and perform matrix operations
in a linear cost. We refer to [2] for the technical details of the .7#-matrix method.

The matrix C resulting from a covariance function c¢(+) is not sparse. To find a
data sparse representation of some blocks of the covariance matrix, their low-rank
decomposition must be exploited. We refer to [1] for the description of analytical
techniques to find a low-rank approximation of a block & (x;,x ;) of the covariance
function c(x;,x;). According to [2], to admit a low-rank representation it is necessary
that the underlying functions satisfy so called ‘asymptotic smoothness condition’.

We define a d-dimensional multi-index notation a = (o, @, ...,0y) of non-
negative integers. For the multi-index o € Ng sum of the components or absolute
value can be written as |&| = @ + 0 + - - - 4 0 and higher-order partial derivatives
as 9% = 919y ..., where 9" = 9% /dx{ of the dimension d. Let X;,X; C R?
be subsets such that the function c(x;,x;) is defined and arbitrarily often differen-
tiable for all spatial locations x; € X; and x; € X; with x; # x; for i, j =1,...,N.
Then the covariance function c¢(x;,x;) is asymptotically smooth if there exist con-
stants p;, p>» € RT, such that for all multi-indices & € Ng, one has

0% c(xi,x)| < prletps (|l —x]) 1 o)

for all x; # x;.

The factor p‘za‘ allows for a change of the growth behaviour. The derivatives
tend to 0 as ||x; —x;|| — co. The condition (4) is required to guarantee a fast decay
of the eigenvalues of the underlying function which leads to an effective low-rank
approximation Cf, , of specific blocks of C, so that the error |c(x;,x;) — &(x;,x;)|
of a low-rank approximation of ¢(x;,x;) converges exponentially fast. At first sight,
the condition (4) seems to be restrictive. However, this condition is satisfied by
some classes of spatial covariance functions such as Matérn and spatio-temporal
covariance functions, see [1] for the details.

We aim to approximate a covariance matrix by the .77-method and perform a fast
approximated Cholesky decomposition. We denote the .77-matrix approximation of
the covariance matrix by C and approximation of the Cholesky factor by A, so that
C = AAT . To be able to perform approximate Cholesky decomposition, the positive
definiteness property of C should be preserved. With the approximation by .#-
matrices, the error can propagate and perturb the eigenvalues of the resulting matrix.
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If the smallest eigenvalue is close to the origin, the result of these operations might
become indefinite. To tackle this problem, we follow the suggestion of [5] to add
a nugget value to the diagonal of C, albeit sacrificing approximation accuracy for
the sake of positive definiteness. The 7#-approximation of the exact log-likelihood
L(8) is defined by L(8,k) with the maximal rank k

L6 k)——ﬁlo 27:—{‘,10 i tutu (5)
=75 g & gAi ) ,
=

where UTU = Z" (AAT)~'Z = Z" CZ which is composed of the matrix-vector mul-
tiplications with a log-linear cost and A; are diagonal elements of A, such that

logdet (C) = logdet AAT = logdet (Hﬁvl iiz) =2Y¥ logh;.

As with the likelihood in (5), we substitute Cz in (2) by the approximated
by #- covariance C;. Then a simple kriging prediction for a location x using
the estimated covariance function with 8 in (5) is Z(xg) = &(x9)'C,'Z, where
¢(xo) = [é(x0,%1), . - .,¢(x0,xn)] is the .7#-matrix approximation of the correspond-
ing covariance vector. We note that as in (5) it is also based on the matrix-vector mul-
tiplications which leads to the log-linear cost computation due to the 7#-matrices.

3 Numerical results

For the covariance tapering approach distant pairs of observations are modelled us-
ing a compactly supported covariance function. With the .7#’-matrices, off-diagonal
elements of Cz are defined through the low-rank factors. Because of the similarity
of both methods, the main purpose of this section is to compare their performance
based on computational and statistical efficiency. With the covariance tapering the
’score’ function for 6 based on (3) is biased. Since (5) also entails a biased score
function, i.e $(27'C;'C,C,'Z—t(C,'Ciz)), we use (5) with 7 -covariance C; and
(3) with tapered covariance Cr.

The simulation study is performed with the increasing domain asymptotics setup
on the randomly perturbed grid of spatial locations by constructing a regular grid
with increments 0.03 over W, = [0,2¢+2)/2] x [0,2(+2)/2] " k=0,...,2. and per-
turbing the regular grid points by adding a uniform random value on [—0.01,0.01].
With this setup, each data location is at least 0.01 units distant from its neighbours.

For the different sample size of N, = {2000,4000,8000} points with k =0, ...,2
chosen without replacement, we simulate L = 100 realizations of zero-mean GRF
with Matérn covariance with the true parameters 8 = (62, ¢, v,7%) = (1,0.1,0.5,0.1),
where 62 is the marginal variance and 77 is the nugget parameter. We fix the smooth-
ness parameter v = 0.5 (exponential covariance function) and 7> = 0.1 is added to
the diagonal in order to preserve the positive definiteness property. In addition, we
scale the distance in (4) by the range parameter ¢. This adjustment resulted in a
computational efficiency that is doubled compared to the standard condition.
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To check the predictive performance with the increasing Mg, we divide the sim-
ulated data into a training dataset chosen at random and a validation dataset con-
taining the remaining 10%, i.e M = {200,400,800} observations respectively. As
practical range we set ¢ = 0.1 due to consistency of ¢ over the spatial domain to
increasing domain framework. Because we keep distance as fixed, increasing k and
consequently the number N; of observations, the percentage of nonzero elements
in the resulting tapered covariance matrix decreases. By varying the practical range
0 =1{0.15,0.3,0.5}, the percentage of non-zero elements p in the tapered covariance
matrix increases. For the .7/-matrices we control the compression ratio ¢ which is
defined as the ratio between the sizes of a compressed (hierarchical matrix) C and
original matrix C. The h2lib library' was exploited for application of .7#-matrices);
for covariance tapering method spam[6] was used.
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Fig. 1 Boxplots of sampled estimates (a)-(c) ¢ and (d)-(f) 62 with the horizontal line of the true
estimates (¢ = 0.1,62 = 1) under the exact maximum likelihood estimation (MLE), covariance
tapering (TAP) and .7/-matrices (HM)

Figure 1 shows boxplots of the estimates of the ¢ and ¢ parameters with the
both methods, including the exact ML estimation. The horizontal line indicates the
true values of the estimates (¢ =0.1,6% = 1). As taper § decreases, the biases in the
one-taper estimates increase. In contrast, we see negligible bias in the #’-matrices
estimates. The difference in variance estimates with both methods is almost indis-
tinguishable. In terms of computational efficiency, for example, for n = 8000 likeli-
hood evaluation based on the .7-matrices with g, required #,, = 2 min compared
to #4p = 7 min by the covariance tapering approach with p,,4,. Thus, the application

! https://github.com/H2Lib/H2Lib, developed by Steffen Boerm and his group, Kiel, Germany
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of #-matrices approach for ML estimation results in computational efficiency as
well as in a good statistical efficiency even with a small compression ratio g.

To compare the predictive performance of both methods we compute Root-
Mean-Squared Prediction Error (RMSPE). The set of the predicted locations for
each M is denoted as D}, with each new location xo € D}, C RY. If Z(xo,[) de-
note the model-A predictor, where Z(x,!) is the /th simulated process evaluated at
a new location xp and A =TAP, HM, then the model-A predictor RMSPE for the

Ith simulation is RMSPE, (/) = \/ZXOEDk (Z(xml)—Z(xo,l))z, I=1,...,L. We
then consider a measure of relative skill (RS), relative to HM, namely RS(N) =
RMSPEnwm (/) /RMSPETap(!) for different N = 2000,4000,8000. As can be seen

from the Figure 2 for different sample size Ny, density and correlation ratio p and g
RS(N) < 1. Therefore, ##’-matrices approach has a better predictive accuracy.
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Fig. 2 Boxplots of RS(N) for (a) Ny =2000: p; =0.2,q; =0.3, N, =4000: p; =0.15,4; =0.25,
N3 =8000:p; =0.1,q; =0.2, (b) Ny =2000: p, =0.5,g> =0.8, Ny =4000: p» =0.38,4> =0.48,
N3 = 8000 : P2 = 0427,q2 = 0.37, (C) N] =2000: p3 = ].5,(]3 = 1.9, N2 =4000 : p3 = 1.337q3 =
1.56, N3 =8000: p3 = 1.12,¢q3 = 1.31
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