This work focuses on investigating the evolution of different traits of psychosis during the COVID-19 pandemic. We develop a Bayesian nonparametric mixture model for multivariate categorical data, which characterizes the population’ psychosis via a set of latent psychological profiles. Leveraging a time- and covariate- dependent stick-breaking construction for the mixture weights, the proposed specification characterizes the dynamic evolution of such latent traits across the pandemic, measuring the effect of subject-specific demographic information such as sex and age of the individuals.

Bayesian nonparametric dynamic modeling of psychological traits

Emanuele Aliverti;FERRACCIOLI, Federico
2021-01-01

Abstract

This work focuses on investigating the evolution of different traits of psychosis during the COVID-19 pandemic. We develop a Bayesian nonparametric mixture model for multivariate categorical data, which characterizes the population’ psychosis via a set of latent psychological profiles. Leveraging a time- and covariate- dependent stick-breaking construction for the mixture weights, the proposed specification characterizes the dynamic evolution of such latent traits across the pandemic, measuring the effect of subject-specific demographic information such as sex and age of the individuals.
2021
CLADAG 2021 BOOK OF ABSTRACTS AND SHORT PAPERS
File in questo prodotto:
File Dimensione Formato  
cladag2021.pdf

accesso aperto

Descrizione: Articolo principale, forma definitiva
Tipologia: Versione dell'editore
Licenza: Accesso gratuito (solo visione)
Dimensione 534.55 kB
Formato Adobe PDF
534.55 kB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3743090
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact