Using isobaric Monte Carlo simulations, we map out the entire phase diagram of a system of hard cylindrical particles of length (L) and diameter (D) using an improved algorithm to identify the overlap condition between two cylinders. Both the prolate L/D > 1 and the oblate L/D < 1 phase diagrams are reported with no solution of continuity. In the prolate L/D > 1 case, we find intermediate nematic N and smectic SmA phases in addition to a low density isotropic I and a high density crystal X phase with I–N-SmA and I-SmA-X triple points. An apparent columnar phase C is shown to be metastable, as in the case of spherocylinders. In the oblate L/D < 1 case, we find stable intermediate cubatic (Cub), nematic (N), and columnar (C) phases with I–N-Cub, N-Cub-C, and I-Cub-C triple points. Comparison with previous numerical and analytical studies is discussed. The present study, accounting for the explicit cylindrical shape, paves the way to more sophisticated models with important biological applications, such as viruses and nucleosomes.

Phase behavior of hard cylinders

Romano, Flavio
Membro del Collaboration Group
;
Giacometti, Achille
Membro del Collaboration Group
2021-01-01

Abstract

Using isobaric Monte Carlo simulations, we map out the entire phase diagram of a system of hard cylindrical particles of length (L) and diameter (D) using an improved algorithm to identify the overlap condition between two cylinders. Both the prolate L/D > 1 and the oblate L/D < 1 phase diagrams are reported with no solution of continuity. In the prolate L/D > 1 case, we find intermediate nematic N and smectic SmA phases in addition to a low density isotropic I and a high density crystal X phase with I–N-SmA and I-SmA-X triple points. An apparent columnar phase C is shown to be metastable, as in the case of spherocylinders. In the oblate L/D < 1 case, we find stable intermediate cubatic (Cub), nematic (N), and columnar (C) phases with I–N-Cub, N-Cub-C, and I-Cub-C triple points. Comparison with previous numerical and analytical studies is discussed. The present study, accounting for the explicit cylindrical shape, paves the way to more sophisticated models with important biological applications, such as viruses and nucleosomes.
2021
154
File in questo prodotto:
File Dimensione Formato  
Lopes_JCP_21.pdf

non disponibili

Descrizione: Lopes_JCP_2021
Tipologia: Versione dell'editore
Licenza: Accesso chiuso-personale
Dimensione 4.34 MB
Formato Adobe PDF
4.34 MB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3737506
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 13
social impact