The paper systematically reviews and compares 88 scenarios of energy demand in commercial and residential buildings that include the additional energy use or savings induced by thermal adaptation in heating and cooling needs at global level. The resulting studies are grouped in a novel classification that makes it possible to systematically understand why the energy projections of integrated assessment models vary depending on how changes in climatic conditions and the associated adaptation needs are modeled. Projections underestimate the energy demand of the building sector when it is driven only by income, population, unchanging climatic conditions and their associated adaptation needs. Across the studies reviewed, already by 2050 climate change will induce a median 30% (90%) percentage variation of a building's energy demand for cooling and a median -8% (-24%) percentage variation for heating, leading to a 2% (13%) increase when cooling and heating are combined, under the Representative Concentration Pathway 1.9 (8.5). The results underscore that models lacking extensive margin adjustments, and models that focus on residential demand, highly underestimate the additional cooling needs of the building sector. Topics that deserve further investigation regard improving the characterization of adopting energy-using goods that provide thermal adaptation services and better articulating the heterogeneous needs across sectors.
Cooling demand in integrated assessment models: a methodological review
Colelli, FP
;De Cian, E
2020-01-01
Abstract
The paper systematically reviews and compares 88 scenarios of energy demand in commercial and residential buildings that include the additional energy use or savings induced by thermal adaptation in heating and cooling needs at global level. The resulting studies are grouped in a novel classification that makes it possible to systematically understand why the energy projections of integrated assessment models vary depending on how changes in climatic conditions and the associated adaptation needs are modeled. Projections underestimate the energy demand of the building sector when it is driven only by income, population, unchanging climatic conditions and their associated adaptation needs. Across the studies reviewed, already by 2050 climate change will induce a median 30% (90%) percentage variation of a building's energy demand for cooling and a median -8% (-24%) percentage variation for heating, leading to a 2% (13%) increase when cooling and heating are combined, under the Representative Concentration Pathway 1.9 (8.5). The results underscore that models lacking extensive margin adjustments, and models that focus on residential demand, highly underestimate the additional cooling needs of the building sector. Topics that deserve further investigation regard improving the characterization of adopting energy-using goods that provide thermal adaptation services and better articulating the heterogeneous needs across sectors.File | Dimensione | Formato | |
---|---|---|---|
manuscript.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Accesso gratuito (solo visione)
Dimensione
1.08 MB
Formato
Adobe PDF
|
1.08 MB | Adobe PDF | Visualizza/Apri |
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.