Herein, a reduced graphene oxide–zinc oxide (rGO–ZnO) hybrid nanocomposite (1 wt% rGO) is synthesized and heat treated at different temperatures, aimed at modulating the intrinsic bulk/surface defects naturally present in nano-ZnO. The correlation of both the dispersion of rGO within the metal oxide scaffold and the defects present on the semiconductor crystalline lattice with the photocatalytic performance toward the degradation of a molecular dye in water is investigated and discussed. It is shown that several processes compete to determine the catalytic skill of the nanocomposite, which can be enhanced by a simple thermal treatment at moderate temperatures.

Thermal Defect Modulation and Functional Performance: A Case Study on ZnO–rGO Nanocomposites

Vomiero A.;
2019

Abstract

Herein, a reduced graphene oxide–zinc oxide (rGO–ZnO) hybrid nanocomposite (1 wt% rGO) is synthesized and heat treated at different temperatures, aimed at modulating the intrinsic bulk/surface defects naturally present in nano-ZnO. The correlation of both the dispersion of rGO within the metal oxide scaffold and the defects present on the semiconductor crystalline lattice with the photocatalytic performance toward the degradation of a molecular dye in water is investigated and discussed. It is shown that several processes compete to determine the catalytic skill of the nanocomposite, which can be enhanced by a simple thermal treatment at moderate temperatures.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/10278/3723825
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact