We describe a fast and effective procedure for the preparation of high efficiency hybrid photoanodes for dye- sensitized solar cells (DSCs), based on nanocrystalline TiO2 with limited addition of multiwall carbon nanotubes (CNTs). The mixing process between CNTs and TiO2 nanoparticles is almost instantaneous, which makes it feasible for large-scale fabrication. Enhanced electron lifetime and reduced charge recombination lead to highly increased short circuit current density and overall photoconversion efficiency (from 13.6 mA cm−2 to 16.0 mA cm−2 and from 7.0% to 9.0%, respectively, considering the bare TiO2 and the optimum CNTs concentration, which is 0.010 wt %), while the small reduction in open circuit photovoltage does not significantly affect cell performances. This result is remarkable since a standard dye molecule (N719) was used and no chemical treatments of the photoanodes prior to cell fabrication were applied (i.e., soaking in TiCl4 to boost open circuit photovoltage).

Hybrid Carbon Nanotubes−TiO2 Photoanodes for High Efficiency Dye-Sensitized Solar Cells

SBERVEGLIERI, Giorgio;VOMIERO, Alberto
2013-01-01

Abstract

We describe a fast and effective procedure for the preparation of high efficiency hybrid photoanodes for dye- sensitized solar cells (DSCs), based on nanocrystalline TiO2 with limited addition of multiwall carbon nanotubes (CNTs). The mixing process between CNTs and TiO2 nanoparticles is almost instantaneous, which makes it feasible for large-scale fabrication. Enhanced electron lifetime and reduced charge recombination lead to highly increased short circuit current density and overall photoconversion efficiency (from 13.6 mA cm−2 to 16.0 mA cm−2 and from 7.0% to 9.0%, respectively, considering the bare TiO2 and the optimum CNTs concentration, which is 0.010 wt %), while the small reduction in open circuit photovoltage does not significantly affect cell performances. This result is remarkable since a standard dye molecule (N719) was used and no chemical treatments of the photoanodes prior to cell fabrication were applied (i.e., soaking in TiCl4 to boost open circuit photovoltage).
2013
117
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3712336
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 120
  • ???jsp.display-item.citation.isi??? 114
social impact