We investigated the scaling properties of two datasets of the observed near-surface global temperature data anomalies: the Met Office and the University of East Anglia Climatic Research Unit HadCRUT4 dataset and the NASA GISS Land-Ocean Temperature Index (LOTI) dataset. We used detrended fluctuation analysis of second-order (DFA2) and wavelet-based spectral (WTS) analysis to investigate and quantify the global pattern of scaling in two datasets and to better understand cyclic behavior as a possible underlying cause of the observed forms of scaling. We found that, excluding polar and parts of subpolar regions because of their substantial data inhomogeneity, the global temperature pattern is long-range autocorrelated. Our results show a remarkable heterogeneity in the long-range dynamics of the global temperature anomalies in both datasets. This finding is in agreement with previous studies. We additionally studied the DFA2 and the WTS behavior of the local station temperature anomalies and satellite-based temperature estimates and found that the observed diversity of global scaling can be attributed both to the intrinsic variability of data and to the methodology-induced variations that arise from deriving the global temperature gridded data from the original local sources. Finally, we found differences in global temperature scaling patterns of the two datasets and showed instances where spurious scaling is introduced in the global datasets through a spatial infilling procedure or the optimization of integrated satellite records.

Heterogeneity of scaling of the observed global temperature data

Blesic, Suzana
;
Zanchettin, Davide;Rubino, Angelo
2019

Abstract

We investigated the scaling properties of two datasets of the observed near-surface global temperature data anomalies: the Met Office and the University of East Anglia Climatic Research Unit HadCRUT4 dataset and the NASA GISS Land-Ocean Temperature Index (LOTI) dataset. We used detrended fluctuation analysis of second-order (DFA2) and wavelet-based spectral (WTS) analysis to investigate and quantify the global pattern of scaling in two datasets and to better understand cyclic behavior as a possible underlying cause of the observed forms of scaling. We found that, excluding polar and parts of subpolar regions because of their substantial data inhomogeneity, the global temperature pattern is long-range autocorrelated. Our results show a remarkable heterogeneity in the long-range dynamics of the global temperature anomalies in both datasets. This finding is in agreement with previous studies. We additionally studied the DFA2 and the WTS behavior of the local station temperature anomalies and satellite-based temperature estimates and found that the observed diversity of global scaling can be attributed both to the intrinsic variability of data and to the methodology-induced variations that arise from deriving the global temperature gridded data from the original local sources. Finally, we found differences in global temperature scaling patterns of the two datasets and showed instances where spurious scaling is introduced in the global datasets through a spatial infilling procedure or the optimization of integrated satellite records.
File in questo prodotto:
File Dimensione Formato  
[15200442 - Journal of Climate] Heterogeneity of Scaling of the Observed Global Temperature Data.pdf

accesso aperto

Tipologia: Versione dell'editore
Licenza: Accesso libero (no vincoli)
Dimensione 2.83 MB
Formato Adobe PDF
2.83 MB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/10278/3711196
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 11
social impact