Different metal precursors and reducing agents were applied in the preparation of 1wt % Pd catalysts supported on commercial ion-exchange resin (Lewatit K2621) and used in the direct synthesis of H2O2. The catalysts were characterized by using TEM and their performance was evaluated in the direct synthesis of H2O2 (in a batch and semi-batch reactor) to investigate the relationship between the catalyst preparation methods, morphology, and catalytic performance. As expected, both the choice of the Pd precursor and the reduction conditions had a strong influence on the size and size distribution of the resulting supported nanostructured metal nanoparticles and, consequently, on the catalytic performance. The best combination of metal precursor and reduction agent was [Pd(NH3)4]SO4 reduced with hydrogen. This catalyst had the largest average size of the Pd nanoparticles and the broadest size distribution.

Different metal precursors and reducing agents were applied in the preparation of 1 wt % Pd catalysts supported on commercial ion-exchange resin (Lewatit K2621) and used in the direct synthesis of H2O2. The catalysts were characterized by using TEM and their performance was evaluated in the direct synthesis of H2O2 (in a batch and semi-batch reactor) to investigate the relationship between the catalyst preparation methods, morphology, and catalytic performance. As expected, both the choice of the Pd precursor and the reduction conditions had a strong influence on the size and size distribution of the resulting supported nanostructured metal nanoparticles and, consequently, on the catalytic performance. The best combination of metal precursor and reduction agent was [Pd(NH3)4]SO4 reduced with hydrogen. This catalyst had the largest average size of the Pd nanoparticles and the broadest size distribution.

Influence of Metal Precursors and Reduction Protocols on the Chloride-Free Preparation of Catalysts for the Direct Synthesis of Hydrogen Peroxide without Selectivity Enhancers

CANTON, Patrizia;
2016-01-01

Abstract

Different metal precursors and reducing agents were applied in the preparation of 1 wt % Pd catalysts supported on commercial ion-exchange resin (Lewatit K2621) and used in the direct synthesis of H2O2. The catalysts were characterized by using TEM and their performance was evaluated in the direct synthesis of H2O2 (in a batch and semi-batch reactor) to investigate the relationship between the catalyst preparation methods, morphology, and catalytic performance. As expected, both the choice of the Pd precursor and the reduction conditions had a strong influence on the size and size distribution of the resulting supported nanostructured metal nanoparticles and, consequently, on the catalytic performance. The best combination of metal precursor and reduction agent was [Pd(NH3)4]SO4 reduced with hydrogen. This catalyst had the largest average size of the Pd nanoparticles and the broadest size distribution.
2016
8
File in questo prodotto:
File Dimensione Formato  
Sterchele et al chemcatchem-v01.docx

non disponibili

Descrizione: Articolo Principale preprint
Tipologia: Documento in Pre-print
Licenza: Accesso chiuso-personale
Dimensione 6.4 MB
Formato Microsoft Word XML
6.4 MB Microsoft Word XML   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3674932
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact