We design an all-DNA system that behaves like vitrimers, innovative plastics with self-healing and stress-releasing properties. The DNA sequences are engineered to self-assemble first into tetra- and bifunctional units which, upon further cooling, bind to each other forming a fully bonded network gel. An innovative design of the binding regions of the DNA sequences, exploiting a double toehold-mediated strand displacement, generates a network gel which is able to reshuffle its bonds, retaining at all times full bonding. As in vitrimers, the rate of bond switching can be controlled via a thermally activated catalyst, which in the present design is very short DNA strands.

Switching bonds in a DNA gel: An all-DNA vitrimer

ROMANO, Flavio;
2015-01-01

Abstract

We design an all-DNA system that behaves like vitrimers, innovative plastics with self-healing and stress-releasing properties. The DNA sequences are engineered to self-assemble first into tetra- and bifunctional units which, upon further cooling, bind to each other forming a fully bonded network gel. An innovative design of the binding regions of the DNA sequences, exploiting a double toehold-mediated strand displacement, generates a network gel which is able to reshuffle its bonds, retaining at all times full bonding. As in vitrimers, the rate of bond switching can be controlled via a thermally activated catalyst, which in the present design is very short DNA strands.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3672789
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 31
social impact