Phase transitions in one-dimensional classical fluids are usually ruled out by using van Hove's theorem. A way to circumvent the conclusions of the theorem is to consider an interparticle potential that is everywhere bounded. Such is the case of, e.g., the generalized exponential model of index 4 (GEM-4 potential), which in three dimensions gives a reasonable description of the effective repulsion between flexible dendrimers in a solution. An extensive Monte Carlo simulation of the one-dimensional GEM-4 model [S. Prestipino, Phys. Rev. E 90, 042306 (2014)PLEEE81539-375510.1103/PhysRevE.90.042306] has recently provided evidence of an infinite sequence of low-temperature cluster phases, however, also suggesting that upon pushing the simulation forward what seemed a true transition may eventually prove to be only a sharp crossover. We hereby investigate this problem theoretically by use of three different and increasingly sophisticated approaches (i.e., a mean-field theory, the transfer matrix of a lattice model of clusters, and the exact treatment of a system of point clusters in the continuum) to conclude that the alleged transitions of the one-dimensional GEM-4 system are likely just crossovers.
Phase transitions in one-dimensional classical fluids are usually ruled out by making appeal to van Hove’s theorem. A way to circumvent the conclusions of the theorem is to consider an interparticle potential that is everywhere bounded. Such is the case of, e.g., the generalized exponential model of index 4 (GEM-4 potential), which in three dimensions gives a reasonable description of the effective repulsion between flexible dendrimers in a solution. An extensive Monte Carlo simulation of the one-dimensional GEM-4 model [S. Prestipino, Phys. Rev. E 90, 042306 (2014)] has recently provided evidence of an infinite sequence of low-temperature cluster phases, however also suggesting that upon pushing the simulation forward what seemed a true transition may eventually prove to be only a sharp crossover. We hereby investigate this problem theoretically, by three different and increasingly sophisticated approaches (i.e., a mean-field theory, the transfer matrix of a lattice model of clusters, and the exact treatment of a system of point clusters in the continuum), to conclude that the alleged transitions of the one-dimensional GEM4 system are likely just crossovers.
Probing the existence of phase transitions in one-dimensional fluids of penetrable particles
GAZZILLO, Domenico;TASINATO, Nicola
2015-01-01
Abstract
Phase transitions in one-dimensional classical fluids are usually ruled out by making appeal to van Hove’s theorem. A way to circumvent the conclusions of the theorem is to consider an interparticle potential that is everywhere bounded. Such is the case of, e.g., the generalized exponential model of index 4 (GEM-4 potential), which in three dimensions gives a reasonable description of the effective repulsion between flexible dendrimers in a solution. An extensive Monte Carlo simulation of the one-dimensional GEM-4 model [S. Prestipino, Phys. Rev. E 90, 042306 (2014)] has recently provided evidence of an infinite sequence of low-temperature cluster phases, however also suggesting that upon pushing the simulation forward what seemed a true transition may eventually prove to be only a sharp crossover. We hereby investigate this problem theoretically, by three different and increasingly sophisticated approaches (i.e., a mean-field theory, the transfer matrix of a lattice model of clusters, and the exact treatment of a system of point clusters in the continuum), to conclude that the alleged transitions of the one-dimensional GEM4 system are likely just crossovers.File | Dimensione | Formato | |
---|---|---|---|
Gazzillo_PRE2015.pdf
non disponibili
Descrizione: Articolo principale
Tipologia:
Versione dell'editore
Licenza:
Accesso chiuso-personale
Dimensione
833.98 kB
Formato
Adobe PDF
|
833.98 kB | Adobe PDF | Visualizza/Apri |
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.