This study presents a detailed simulation-based analysis of the detection limits of multi-element monolithic Germanium (Ge) detectors to cadmium traces in environmental soil samples. Using the capabilities of the Geant4 Monte Carlo toolkit in combination with the Solid State Detector Package, we evaluated the detection limit variation with the sample-to-detector distances and photon flux. These simulations were conducted to mimic realistic conditions, with a photon flux measured by the SAMBA beamline at the SOLEIL synchrotron facility. Our findings for the detection limit for trace amounts of pollutants in low concentrations like cadmium in the soil provide valuable insights for optimizing experimental setups in environmental monitoring and synchrotron-based applications, where precise detection of trace elements is critical.
Progress in the Development of Multi-Element Monolithic Germanium Detectors in LEAPS-INNOV Project: Insights from Detector Performance Simulation
Porro, M.;
2025-01-01
Abstract
This study presents a detailed simulation-based analysis of the detection limits of multi-element monolithic Germanium (Ge) detectors to cadmium traces in environmental soil samples. Using the capabilities of the Geant4 Monte Carlo toolkit in combination with the Solid State Detector Package, we evaluated the detection limit variation with the sample-to-detector distances and photon flux. These simulations were conducted to mimic realistic conditions, with a photon flux measured by the SAMBA beamline at the SOLEIL synchrotron facility. Our findings for the detection limit for trace amounts of pollutants in low concentrations like cadmium in the soil provide valuable insights for optimizing experimental setups in environmental monitoring and synchrotron-based applications, where precise detection of trace elements is critical.I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



