In this paper, TCAD simulations provide insights on the effect of a non-linear dielectric gate stack on the short-circuit performance of silicon carbide (SiC) power MOSFETs. In particular, the regular gate oxide was replaced by a stack formed by silicon dioxide and a non-linear dielectric whose permittivity varies with temperature, in order to counterbalance the reduction of the threshold voltage due to temperature. Simulations show that the presented device has a higher ruggedness to short-circuit events, thanks to the reduction of the maximum temperature arising in the device during those events.
Short-Circuit Rugged 1.2 kV SiC MOSFET with a Non-Linear Dielectric Gate Stack
Salvatore G. A.
2023-01-01
Abstract
In this paper, TCAD simulations provide insights on the effect of a non-linear dielectric gate stack on the short-circuit performance of silicon carbide (SiC) power MOSFETs. In particular, the regular gate oxide was replaced by a stack formed by silicon dioxide and a non-linear dielectric whose permittivity varies with temperature, in order to counterbalance the reduction of the threshold voltage due to temperature. Simulations show that the presented device has a higher ruggedness to short-circuit events, thanks to the reduction of the maximum temperature arising in the device during those events.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



