We present Timber, the first white-box poisoning attack targeting decision trees. Timber is based on a greedy attack strategy that leverages sub-tree retraining to efficiently estimate the damage caused by poisoning a given training instance. The attack relies on a tree annotation procedure, which enables the sorting of training instances so that they are processed in increasing order of the computational cost of sub-tree retraining. This sorting yields a variant of Timber that supports an early stopping criterion, designed to make poisoning attacks more efficient and feasible on larger datasets. We also discuss an extension of Timber to traditional random forest models, which is valuable since decision trees are typically combined into ensembles to improve their predictive power. Our experimental evaluation on public datasets demonstrates that our attacks outperform existing baselines in terms of effectiveness, efficiency, or both. Moreover, we show that two representative defenses can mitigate the effect of our attacks, but fail to effectively thwart them.

Timber! Poisoning Decision Trees

Calzavara S.;Cazzaro L.;Vettori M.
2025-01-01

Abstract

We present Timber, the first white-box poisoning attack targeting decision trees. Timber is based on a greedy attack strategy that leverages sub-tree retraining to efficiently estimate the damage caused by poisoning a given training instance. The attack relies on a tree annotation procedure, which enables the sorting of training instances so that they are processed in increasing order of the computational cost of sub-tree retraining. This sorting yields a variant of Timber that supports an early stopping criterion, designed to make poisoning attacks more efficient and feasible on larger datasets. We also discuss an extension of Timber to traditional random forest models, which is valuable since decision trees are typically combined into ensembles to improve their predictive power. Our experimental evaluation on public datasets demonstrates that our attacks outperform existing baselines in terms of effectiveness, efficiency, or both. Moreover, we show that two representative defenses can mitigate the effect of our attacks, but fail to effectively thwart them.
2025
Proceedings - 2025 IEEE Conference on Secure and Trustworthy Machine Learning, SaTML 2025
File in questo prodotto:
File Dimensione Formato  
satml25.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Accesso chiuso-personale
Dimensione 553.97 kB
Formato Adobe PDF
553.97 kB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/5099188
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact