Human trajectory forecasting is crucial in applications such as autonomous driving, robotics and surveillance. Accurate forecasting requires models to consider various factors, including social interactions, multi-modal predictions, pedestrian intention and environmental context. While existing methods account for these factors, they often overlook the impact of the environment, which leads to collisions with obstacles. This paper introduces ECAM (Environmental Collision Avoidance Module), a contrastive learning-based module to enhance collision avoidance ability with the environment. The proposed module can be integrated into existing trajectory forecasting models, improving their ability to generate collision-free predictions. We evaluate our method on the ETH/UCY dataset and quantitatively and qualitatively demonstrate its collision avoidance capabilities. Our experiments show that state-of-the-art methods significantly reduce (-40/50%) the collision rate when integrated with the proposed module.

ECAM: A Contrastive Learning Approach to Avoid Environmental Collision in Trajectory Forecasting

Giacomo Rosin;Muhammad Rameez Ur Rahman;Sebastiano Vascon
2025-01-01

Abstract

Human trajectory forecasting is crucial in applications such as autonomous driving, robotics and surveillance. Accurate forecasting requires models to consider various factors, including social interactions, multi-modal predictions, pedestrian intention and environmental context. While existing methods account for these factors, they often overlook the impact of the environment, which leads to collisions with obstacles. This paper introduces ECAM (Environmental Collision Avoidance Module), a contrastive learning-based module to enhance collision avoidance ability with the environment. The proposed module can be integrated into existing trajectory forecasting models, improving their ability to generate collision-free predictions. We evaluate our method on the ETH/UCY dataset and quantitatively and qualitatively demonstrate its collision avoidance capabilities. Our experiments show that state-of-the-art methods significantly reduce (-40/50%) the collision rate when integrated with the proposed module.
2025
Proceedings of the International Joint Conference on Neural Networks
File in questo prodotto:
File Dimensione Formato  
2506.09626v1.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Accesso gratuito (solo visione)
Dimensione 5.52 MB
Formato Adobe PDF
5.52 MB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/5097771
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact