In the framework of luminescent transition metal ions-doped phosphors for near-infrared (NIR) lighting, Fe3+-activated phosphors have been recently demonstrated to be a potential alternative to the most common Cr3+ and Ni2+-based NIR materials. However, this family of phosphors still suffer from low absorption efficiency and severe thermal quenching. This study investigates the effect of Bi3+ ion concentration on the spectroscopic features of Fe3+ ions in CaAl4O7:Fe3+, Bi3+ system. The presence of the 1S0→1P1 transition band in Fe3+ PLE spectra indicates the Bi3+→Fe3+ energy transfer leading to a corresponding increase in luminescence intensity of Fe3+ ions by over 30-fold compared to Fe3+-singly doped sample. High Bi3+ concentrations also quench Bi3+ ion luminescence, improving NIR emission purity. Additionally, the presence of Bi3+ ions enhances Fe3+ ion luminescence stability by delaying the thermal depopulation, as evidenced by a T50 shift from 323 K to 393 K. Overall, co-doping CaAl4O7:Fe3+ with Bi3+ ions expands excitation spectra, boosts luminescence intensity, and enhances the thermal stability.
Improving the luminescent properties of Fe3+ in CaAl4O7 by co-doping with Bi3+ ions
Crozzolin, M.;Back, M.;Marciniak, L.
2025-01-01
Abstract
In the framework of luminescent transition metal ions-doped phosphors for near-infrared (NIR) lighting, Fe3+-activated phosphors have been recently demonstrated to be a potential alternative to the most common Cr3+ and Ni2+-based NIR materials. However, this family of phosphors still suffer from low absorption efficiency and severe thermal quenching. This study investigates the effect of Bi3+ ion concentration on the spectroscopic features of Fe3+ ions in CaAl4O7:Fe3+, Bi3+ system. The presence of the 1S0→1P1 transition band in Fe3+ PLE spectra indicates the Bi3+→Fe3+ energy transfer leading to a corresponding increase in luminescence intensity of Fe3+ ions by over 30-fold compared to Fe3+-singly doped sample. High Bi3+ concentrations also quench Bi3+ ion luminescence, improving NIR emission purity. Additionally, the presence of Bi3+ ions enhances Fe3+ ion luminescence stability by delaying the thermal depopulation, as evidenced by a T50 shift from 323 K to 393 K. Overall, co-doping CaAl4O7:Fe3+ with Bi3+ ions expands excitation spectra, boosts luminescence intensity, and enhances the thermal stability.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0025540824004124-main.pdf
non disponibili
Tipologia:
Versione dell'editore
Licenza:
Accesso chiuso-personale
Dimensione
4.94 MB
Formato
Adobe PDF
|
4.94 MB | Adobe PDF | Visualizza/Apri |
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.