In the framework of luminescent transition metal ions-doped phosphors for near-infrared (NIR) lighting, Fe3+-activated phosphors have been recently demonstrated to be a potential alternative to the most common Cr3+ and Ni2+-based NIR materials. However, this family of phosphors still suffer from low absorption efficiency and severe thermal quenching. This study investigates the effect of Bi3+ ion concentration on the spectroscopic features of Fe3+ ions in CaAl4O7:Fe3+, Bi3+ system. The presence of the 1S0→1P1 transition band in Fe3+ PLE spectra indicates the Bi3+→Fe3+ energy transfer leading to a corresponding increase in luminescence intensity of Fe3+ ions by over 30-fold compared to Fe3+-singly doped sample. High Bi3+ concentrations also quench Bi3+ ion luminescence, improving NIR emission purity. Additionally, the presence of Bi3+ ions enhances Fe3+ ion luminescence stability by delaying the thermal depopulation, as evidenced by a T50 shift from 323 K to 393 K. Overall, co-doping CaAl4O7:Fe3+ with Bi3+ ions expands excitation spectra, boosts luminescence intensity, and enhances the thermal stability.

Improving the luminescent properties of Fe3+ in CaAl4O7 by co-doping with Bi3+ ions

Crozzolin, M.;Back, M.;Marciniak, L.
2025-01-01

Abstract

In the framework of luminescent transition metal ions-doped phosphors for near-infrared (NIR) lighting, Fe3+-activated phosphors have been recently demonstrated to be a potential alternative to the most common Cr3+ and Ni2+-based NIR materials. However, this family of phosphors still suffer from low absorption efficiency and severe thermal quenching. This study investigates the effect of Bi3+ ion concentration on the spectroscopic features of Fe3+ ions in CaAl4O7:Fe3+, Bi3+ system. The presence of the 1S0→1P1 transition band in Fe3+ PLE spectra indicates the Bi3+→Fe3+ energy transfer leading to a corresponding increase in luminescence intensity of Fe3+ ions by over 30-fold compared to Fe3+-singly doped sample. High Bi3+ concentrations also quench Bi3+ ion luminescence, improving NIR emission purity. Additionally, the presence of Bi3+ ions enhances Fe3+ ion luminescence stability by delaying the thermal depopulation, as evidenced by a T50 shift from 323 K to 393 K. Overall, co-doping CaAl4O7:Fe3+ with Bi3+ ions expands excitation spectra, boosts luminescence intensity, and enhances the thermal stability.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0025540824004124-main.pdf

non disponibili

Tipologia: Versione dell'editore
Licenza: Accesso chiuso-personale
Dimensione 4.94 MB
Formato Adobe PDF
4.94 MB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/5096049
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact