The amount and quality of dissolved organic carbon (DOC) exported from terrestrial to riverine ecosystems are critical factors influencing aquatic metabolism and ecosystem health in streams, rivers, and lakes. This study investigates the interplay between hydrologic conditions and DOC dynamics in an alpine catchment, focusing on how DOC concentration and quality shift during baseflow, snowmelt, and storm events. Such dynamics were explored in the Oberer Seebach basin (Austria) where sub-daily DOC concentration data, along with high resolution excitation-emission matrices and absorbance spectra, were used to characterize DOC concentration and quality. We quantitatively linked hydrologic pathways with DOC dynamics by advancing a framework that couples water age, which tracks the time water spends within the catchment, with the Reactivity Continuum model, which quantifies the evolution of DOC reactivity and ensuing concentration. Results show that simulating both water age and DOC reactivity effectively reproduces DOC concentrations and reveals a correlation between modeled reactivity and observed DOC quality indices. During snowmelt and storm events, rapid hydrologic pathways transport reactive DOC with a quality profile similar to that of freshly formed terrestrial DOC, while during baseflow, slower pathways carry less reactive DOC with a signature of preceding degradation processes. These findings shed light on the role of catchment hydrology in carbon cycling and on its implications for riverine ecosystem functioning.

Water Transit Time Explains the Concentration, Quality and Reactivity of Dissolved Organic Carbon in an Alpine Stream

Grandi, G.
Conceptualization
;
Bertuzzo, E.
Supervision
2025-01-01

Abstract

The amount and quality of dissolved organic carbon (DOC) exported from terrestrial to riverine ecosystems are critical factors influencing aquatic metabolism and ecosystem health in streams, rivers, and lakes. This study investigates the interplay between hydrologic conditions and DOC dynamics in an alpine catchment, focusing on how DOC concentration and quality shift during baseflow, snowmelt, and storm events. Such dynamics were explored in the Oberer Seebach basin (Austria) where sub-daily DOC concentration data, along with high resolution excitation-emission matrices and absorbance spectra, were used to characterize DOC concentration and quality. We quantitatively linked hydrologic pathways with DOC dynamics by advancing a framework that couples water age, which tracks the time water spends within the catchment, with the Reactivity Continuum model, which quantifies the evolution of DOC reactivity and ensuing concentration. Results show that simulating both water age and DOC reactivity effectively reproduces DOC concentrations and reveals a correlation between modeled reactivity and observed DOC quality indices. During snowmelt and storm events, rapid hydrologic pathways transport reactive DOC with a quality profile similar to that of freshly formed terrestrial DOC, while during baseflow, slower pathways carry less reactive DOC with a signature of preceding degradation processes. These findings shed light on the role of catchment hydrology in carbon cycling and on its implications for riverine ecosystem functioning.
2025
61
File in questo prodotto:
File Dimensione Formato  
Water Resources Research - 2025 - Grandi - Water Transit Time Explains the Concentration Quality and Reactivity of.pdf

accesso aperto

Descrizione: articolo
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 2.34 MB
Formato Adobe PDF
2.34 MB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/5091728
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact