Mapping shallow-water bathymetry and morphology represents a technical challenge. In fact, acoustic surveys are limited by water depths reachable by boat, and airborne surveys have high costs. Photogrammetric approaches (either via drone or from the sea surface) have opened up the possibility to perform shallow-water surveys easily and at accessible costs. This work presents a simple, low-cost, and highly portable platform that allows gathering sequential photos and echosounder depth values of shallow-water sites (up to 5 m depth). The photos are then analysed in conjunction with photogrammetric techniques to obtain digital bathymetric models and orthomosaics of the seafloor. The workflow was tested on four repeated surveys of the same area in the Western Mediterranean and allowed obtaining digital bathymetric models with centimetric average accuracy and precision and root mean square errors within a few decimetres. The platform presented in this work can be employed to obtain first-order bathymetric products, enabling the contextual establishment of the depth accuracy of the final products.
Accuracy and Precision of Shallow-Water Photogrammetry from the Sea Surface
Casella, Elisa
;Rovere, Alessio
2024-01-01
Abstract
Mapping shallow-water bathymetry and morphology represents a technical challenge. In fact, acoustic surveys are limited by water depths reachable by boat, and airborne surveys have high costs. Photogrammetric approaches (either via drone or from the sea surface) have opened up the possibility to perform shallow-water surveys easily and at accessible costs. This work presents a simple, low-cost, and highly portable platform that allows gathering sequential photos and echosounder depth values of shallow-water sites (up to 5 m depth). The photos are then analysed in conjunction with photogrammetric techniques to obtain digital bathymetric models and orthomosaics of the seafloor. The workflow was tested on four repeated surveys of the same area in the Western Mediterranean and allowed obtaining digital bathymetric models with centimetric average accuracy and precision and root mean square errors within a few decimetres. The platform presented in this work can be employed to obtain first-order bathymetric products, enabling the contextual establishment of the depth accuracy of the final products.File | Dimensione | Formato | |
---|---|---|---|
remotesensing-16-04321.pdf
accesso aperto
Tipologia:
Versione dell'editore
Licenza:
Creative commons
Dimensione
10.46 MB
Formato
Adobe PDF
|
10.46 MB | Adobe PDF | Visualizza/Apri |
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.