We investigate a perturbatively renormalizable 𝑆𝑞 invariant model with 𝑁=𝑞−1 scalar field components below the upper critical dimension 𝑑𝑐=10/3. Our results hint at the existence of multicritical generalizations of the critical models of spanning random clusters and percolations in three dimensions. We also discuss the role of our multicritical model in a conjecture that involves the separation of first and second order phases in the (𝑑,𝑞) diagram of the Potts model.

Multicritical Landau-Potts field theory

Codello, A.;
2020-01-01

Abstract

We investigate a perturbatively renormalizable 𝑆𝑞 invariant model with 𝑁=𝑞−1 scalar field components below the upper critical dimension 𝑑𝑐=10/3. Our results hint at the existence of multicritical generalizations of the critical models of spanning random clusters and percolations in three dimensions. We also discuss the role of our multicritical model in a conjecture that involves the separation of first and second order phases in the (𝑑,𝑞) diagram of the Potts model.
2020
102
File in questo prodotto:
File Dimensione Formato  
codello2020b.pdf

non disponibili

Tipologia: Versione dell'editore
Licenza: Copyright dell'editore
Dimensione 546.09 kB
Formato Adobe PDF
546.09 kB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/5083165
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact