We investigate a perturbatively renormalizable 𝑆𝑞 invariant model with 𝑁=𝑞−1 scalar field components below the upper critical dimension 𝑑𝑐=10/3. Our results hint at the existence of multicritical generalizations of the critical models of spanning random clusters and percolations in three dimensions. We also discuss the role of our multicritical model in a conjecture that involves the separation of first and second order phases in the (𝑑,𝑞) diagram of the Potts model.
Multicritical Landau-Potts field theory
Codello, A.;
2020-01-01
Abstract
We investigate a perturbatively renormalizable 𝑆𝑞 invariant model with 𝑁=𝑞−1 scalar field components below the upper critical dimension 𝑑𝑐=10/3. Our results hint at the existence of multicritical generalizations of the critical models of spanning random clusters and percolations in three dimensions. We also discuss the role of our multicritical model in a conjecture that involves the separation of first and second order phases in the (𝑑,𝑞) diagram of the Potts model.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
codello2020b.pdf
non disponibili
Tipologia:
Versione dell'editore
Licenza:
Copyright dell'editore
Dimensione
546.09 kB
Formato
Adobe PDF
|
546.09 kB | Adobe PDF | Visualizza/Apri |
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.