Spatial regression with differential regularization is an innovative approach at the crossroad between functional data analysis and spatial data analysis. These models have been shown to be numerically efficient and capable to handle complex applied problems. On the other hand, their theoretical properties are still largely unexplored. Here we consider the discrete estimators in spatial regression models with differential regularization, obtained after numerical discretization, using an expansion on a finite element basis. We study the consistency and the asymptotic normality of these discrete estimators. We also propose a nonparametric test procedure for the linear part of the models, based on random sign-flipping of the score components. The test exploits an appropriate decomposition of the smoothing matrix, in order to reduce the effect of the spatial dependence, without any parametric assumption on the form of the correlation structure. The proposed test is shown to be superior to parametric alternatives.
Some first inferential tools for spatial regression with differential regularization
Ferraccioli F.;
2022-01-01
Abstract
Spatial regression with differential regularization is an innovative approach at the crossroad between functional data analysis and spatial data analysis. These models have been shown to be numerically efficient and capable to handle complex applied problems. On the other hand, their theoretical properties are still largely unexplored. Here we consider the discrete estimators in spatial regression models with differential regularization, obtained after numerical discretization, using an expansion on a finite element basis. We study the consistency and the asymptotic normality of these discrete estimators. We also propose a nonparametric test procedure for the linear part of the models, based on random sign-flipping of the score components. The test exploits an appropriate decomposition of the smoothing matrix, in order to reduce the effect of the spatial dependence, without any parametric assumption on the form of the correlation structure. The proposed test is shown to be superior to parametric alternatives.File | Dimensione | Formato | |
---|---|---|---|
79-2021.pdf
non disponibili
Tipologia:
Versione dell'editore
Licenza:
Accesso chiuso-personale
Dimensione
1.46 MB
Formato
Adobe PDF
|
1.46 MB | Adobe PDF | Visualizza/Apri |
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.