Leveraging electrochemistry, a new synthesis of non-natural derivatives of itaconic acid is proposed by utilizing carbon dioxide (CO2) as a valuable C1 synthon. An electrochemical cross-electrophile coupling between allenoates and CO2 was targeted, allowing for the synthesis of both mono- and di-carboxylation products in a catalyst- and additive-free environment (yields up to 87 %, 30 examples). Elaboration of the model mono-carboxylation product, and detailed cyclovoltammetric, as well as mechanistic analyses complete the present investigation.
Electrochemical Synthesis of Itaconic Acid Derivatives via Chemodivergent Single and Double Carboxylation of Allenes with CO2
Zanardi C.Formal Analysis
;
2024-01-01
Abstract
Leveraging electrochemistry, a new synthesis of non-natural derivatives of itaconic acid is proposed by utilizing carbon dioxide (CO2) as a valuable C1 synthon. An electrochemical cross-electrophile coupling between allenoates and CO2 was targeted, allowing for the synthesis of both mono- and di-carboxylation products in a catalyst- and additive-free environment (yields up to 87 %, 30 examples). Elaboration of the model mono-carboxylation product, and detailed cyclovoltammetric, as well as mechanistic analyses complete the present investigation.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.