Highway stormwater (HSW) runoff is among the environment’s most important sources of microplastics. This study aimed to characterize via vibrational spectroscopy and quantify SMPs (small microplastics < 100 µm) in HSW runoff from a trafficked highway entering a facility equipped with a filtration system and in those flowing out to the receiving water body near agricultural activities. Samples of the inlet runoff (from the highway) and outlet runoff (the discharge into the environment) were collected in different periods to investigate potential seasonal and spatial differences. The sampling, methodology, and analysis were thoroughly carried out to quantify and simultaneously identify SMPs via Micro-FTIR to obtain a specific novel dataset to assess the environmental quality of highway pollution. A significant difference between inlet and outlet samples was reported; the highest abundance in inlet samples was 39813 ± 277 SMPs L.1 (SW10 IN; average length of 77 µm), while the highest one in outlet samples was 15173 ± 171 SMPs L−1 (SW10 OUT; SMPs’ average length of 63 µm). Polyamide 6 (PA 6) and High-Density Polyethylene (HDPE) were predominant. Our results show that these HSW treatment plants, designed for managing regulated pollutants, can intercept SMPs, improving the quality of HSW runoff discharged into the environment.
From the highway to receiving water bodies: identification and simultaneous quantification of small microplastics (< 100 µm) in highway stormwater runoff
Rosso, Beatrice;Vezzaro, Luca;Barbante, Carlo;Gambaro, Andrea;Corami, Fabiana
2024-01-01
Abstract
Highway stormwater (HSW) runoff is among the environment’s most important sources of microplastics. This study aimed to characterize via vibrational spectroscopy and quantify SMPs (small microplastics < 100 µm) in HSW runoff from a trafficked highway entering a facility equipped with a filtration system and in those flowing out to the receiving water body near agricultural activities. Samples of the inlet runoff (from the highway) and outlet runoff (the discharge into the environment) were collected in different periods to investigate potential seasonal and spatial differences. The sampling, methodology, and analysis were thoroughly carried out to quantify and simultaneously identify SMPs via Micro-FTIR to obtain a specific novel dataset to assess the environmental quality of highway pollution. A significant difference between inlet and outlet samples was reported; the highest abundance in inlet samples was 39813 ± 277 SMPs L.1 (SW10 IN; average length of 77 µm), while the highest one in outlet samples was 15173 ± 171 SMPs L−1 (SW10 OUT; SMPs’ average length of 63 µm). Polyamide 6 (PA 6) and High-Density Polyethylene (HDPE) were predominant. Our results show that these HSW treatment plants, designed for managing regulated pollutants, can intercept SMPs, improving the quality of HSW runoff discharged into the environment.I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.