Poisoning attacks compromise the training data utilized to train machine learning (ML) models, diminishing their overall performance, manipulating predictions on specific test samples, and implanting backdoors. This article thoughtfully explores these attacks while discussing strategies to mitigate them through fundamental security principles or by implementing defensive mechanisms tailored for ML.

Machine Learning Security Against Data Poisoning: Are We There Yet?

Roli, Fabio;Pelillo, Marcello
2024-01-01

Abstract

Poisoning attacks compromise the training data utilized to train machine learning (ML) models, diminishing their overall performance, manipulating predictions on specific test samples, and implanting backdoors. This article thoughtfully explores these attacks while discussing strategies to mitigate them through fundamental security principles or by implementing defensive mechanisms tailored for ML.
2024
57
File in questo prodotto:
File Dimensione Formato  
Machine_Learning_Security_Against_Data_Poisoning_Are_We_There_Yet (1).pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Copyright dell'editore
Dimensione 1.11 MB
Formato Adobe PDF
1.11 MB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/5081924
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact