Can traders in a financial market learn whether to be informed and which information to use in their demand for risky assets? We describe in this paper an agent-based model where heterogeneous traders seek short-term profits and differ in their choices to use or discard some signals. In the model, a vector of fresh news/signals is available at every period and some (but not all) the signals affect the stochastic payoff of the stock.Under an evolutionary dynamics favouring higher myopic returns we find that, in equilibrium, traders mostly end up in either discarding all signals or being (perfectly) informed using all the relevant signals (paying the related costs). Moreover, the rate of use of information strongly depends on the "complexity" of the market: an excessively large abundance of signals to be screened or a high volatility of the market, result in large shares of passive agents who overestimate the market's risk; conversely, low market complexity is associated with a more intense use of information and aggressiveness of informed traders.

Learning Whether to be Informed in an Agent-Based Evolutionary Market Model

Pellizzari, Paolo
2024-01-01

Abstract

Can traders in a financial market learn whether to be informed and which information to use in their demand for risky assets? We describe in this paper an agent-based model where heterogeneous traders seek short-term profits and differ in their choices to use or discard some signals. In the model, a vector of fresh news/signals is available at every period and some (but not all) the signals affect the stochastic payoff of the stock.Under an evolutionary dynamics favouring higher myopic returns we find that, in equilibrium, traders mostly end up in either discarding all signals or being (perfectly) informed using all the relevant signals (paying the related costs). Moreover, the rate of use of information strongly depends on the "complexity" of the market: an excessively large abundance of signals to be screened or a high volatility of the market, result in large shares of passive agents who overestimate the market's risk; conversely, low market complexity is associated with a more intense use of information and aggressiveness of informed traders.
2024
Artificial Life and Evolutionary Computation
File in questo prodotto:
File Dimensione Formato  
ssrn-4706253.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Accesso libero (no vincoli)
Dimensione 879.02 kB
Formato Adobe PDF
879.02 kB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/5081789
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact