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LEARNING WHETHER TO BE INFORMED IN AN
AGENT-BASED EVOLUTIONARY MARKET MODEL

PAOLO PELLIZZARI

Abstract. Can traders in a financial market learn whether to be
informed and which information to use in their demand for risky
assets? We describe in this paper an agent-based model where
heterogeneous traders seek short-term profits and differ in their
choices to use or discard some signals. In the model, a vector of
fresh news/signals is available at every period and some (but not
all) the signals affect the stochastic payoff of the stock.

Under an evolutionary dynamics favouring higher myopic re-
turns we find that, in equilibrium, traders mostly end up in either
discarding all signals or being (perfectly) informed using all the
relevant signals (paying the related costs). Moreover, the rate of
use of information strongly depends on the “complexity” of the
market: an excessively large abundance of signals to be screened
or a high volatility of the market, result in large shares of passive
agents who overestimate the market’s risk; conversely, low market
complexity is associated with a more intense use of information
and aggressiveness of informed traders. Evolutionary models and
Agent-based models and Information in financial markets

1. Introduction

Many investors acquire information on their investments and try to
make some sense of the markets’ situations and prospects. We refer, in
what follows, especially to “fundamental” information regarding what
is typically believed in economic textbooks to be relevant to explain to
some extent the movements of equity prices such as, say, interest rates,
inflation, GDP growth in developed end emerging markets, geopolitical
events, international imbalances and breaking news on firms or events
of (potential) broad impact1.

1We discard “technical” information, mostly derived from time-series and historical
data. Many traders may use such “information” but the model has little to say in
this respect as no past observation is used, see [Lo et al., 2000] for an evergreen
examination of technical trading.

1
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2 PAOLO PELLIZZARI

As an example, on April 29th 2023 the most common Italian financial
newspaper, “Il Sole 24 ore” printed that:

• Wall Street “bets” on (forthcoming) interest rates cuts of 300
basis points (first page);
• Taipei has denounced the intrusion of 38 Chinese military air-
planes in its space. Chinese authorities pleaded that they were
“monitoring” one US military fighter flying in the area (first
page);
• Jerome Powell, chairman of the FED, declared “We will not
reduce the interest rates in 2023” (page 7);

The previous news (or signals) have the capability to provide valu-
able investment insights and, yet, it is hard to pick the most significant
or decide whether to use them all. It is even more difficult to unam-
biguously interpret the news. There are basically opposite statements
on the trend of US interest rates: an hypothetical personification of
Wall Street expects a drop of 3%, but Powell stated this is not going
to happen. Well, at least in 2023! In principle, exploiting the lack of a
clear timeline, both news could be correct as rates’ cuts may come in
2024. Indeed, there is a good joke stating that wise forecasters should
never provide a number and a date... Geopolitical strained relations
involving China, Taipei and USA are hinted at, with no clear implica-
tions on asset prices. Whether and how to use such information is an
interesting, as well as far from trivial, issue.

Many analogous examples can be drawn, virtually any day, from
other financial newspapers or websites, official and informal reports by
public and private institutions, central banks’ statements, and various
intelligence from advisory firms and respected professionals or gurus.
We present in this model a stylised depiction of investors who are sim-
ilarly flooded with information and have little guidance on how to use
such body of insights. They try to use and interpret a stream of signals
in order to decipher how to behave, most of them attempt to select rel-
evant information, weight it properly and discard irrelevant news, are
aware there is no easy recipes and are willing to imitate strategies or
practices put in place by others.

We assume that traders are boundedly rational and learn to change
their investment strategy by imitating other agents who had better
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LEARNING WHETHER TO BE INFORMED 3

(i.e., higher) returns. In other words, they copy the pattern of use of
information made by more successful peers. A strategy is a vector of
bits (bit-string) where 1 means that the news is used and 0 means that
it is discarded. We include mutation allowing a small fraction of agents
to occasionally flip one of their bits at random. In our simple setup,
given their strategies, all agents have to decide in every period is how
much to buy of a risky asset (while the rest of their endowments will
be put in a safe bond paying a constant interest rate). In this sense,
there is a one-to-one correspondence between a strategy (a bit-string
listing signals to be used or discarded) and a demand function for the
risky asset (as the demand depends on the used information/signals).2

Broadly speaking, demands are based on perceived mean and variance
of returns (the demand of equity is directly/inversely proportional to
the mean/variance). Once all agents submit their demands, a noisy
clearing price can be computed in this market and all transactions will
occur at this local-in-time equilibrium price, realising gains and losses.
Actual returns are also used to assess the quality of the strategies and
fuel learning through a very simple mechanism: couples of agents will
be matched, they compare the realised returns and the worst performer
copies the strategy (or demand function, if you wish) of the best per-
former, beginning to use it in the following period when everyone’s
endowment is replenished3.

Having defined a population of agents, a game that is repeatedly
played by traders and a process to revise old strategy (or learn better
ones), our agent-based model can be interpreted as a canonical evo-
lutionary model. Such models were first introduced in biology, where

2Admittedly, the agents in our model learn in a very basic way, as they have no
memory or expectations and update their behaviour based on a single random
match. A discussion of more sophisticated reinforcement learning approaches (with
an extended bibliography) is in [Huang et al., 2024], where a form of collective
intelligence is built to maximise returns. In contrast, we assume agents are selfish
and myopic.
3It is useful to add to the description of what our agents do, a list of things they
do not do: they do not explicitly maximise any utility function, they do not have
memory, they do not search in a set of possible alternative strategies or, if they do
so, they may need several periods in which they compare the outcomes with a single
strategy, they do not try to anticipate the equilibrium price based on the shares of
strategies in the population, they do not save or accumulate wealth strategically. In
a nutshell, they keep a strategy till they stumble on concrete evidence that someone
else makes higher returns and occasionally flips some bits.

Electronic copy available at: https://ssrn.com/abstract=4706253



4 PAOLO PELLIZZARI

genotypes are inherited and not chosen by individuals, [Smith, 1982],
but were increasingly applied to social and economic environments
where strategies are selected consciously in such a way that the ones
with greater payoff tend to prevail, see the classic [Sandholm, 2010],
or [Newton, 2018] where recent applications are surveyed. We aim at
identifying the set of strategies that will thrive in the long-run, sim-
ulating the market for many periods and examining the final shares
resulting from this evolutionary dynamics.

In brief, our evolutionary model robustly show two main results:
first, most traders end up either in being passive (i.e., discard all sig-
nals) or being (wholly) informed (i.e., acquire all the relevant signals);
second, information usage depends on the “complexity” of the market,
as measured by its volatility or by the quantity of the information that
traders have to screen and process. Overall, the combination of the
above outcomes explains why only some of the relevant information is
used by the agents in the market, with the informed traders holding
notably riskier positions than passive ones. Several of these findings,
driven by short-term evolutionary pressure and inability to deal with
the overwhelming complexity of the market, appear to have a realistic
flavour that is somewhat difficult to get in standard rational expecta-
tion equilibrium models where, for instance, it is difficult to justify why
relevant information should be discarded.

The paper is organised as follows. The next section describes the
model of the market. An example is used to illustrate the flow of deci-
sions/actions, from strategies/demands to prices/profits and evolution
through learning, that are executed in every period. In Section 3, the
main results are presented and some conclusive reflections are given in
Section 4.

2. The model

ConsiderM agents in a market with two assets, a risk-less bond with
unit cost and payoff R > 1 and a risky stock that for a price p∗t , to
be endogenously determined based on the demands of the traders, will
pay a random payoff D̃t. Agents are endowed with a constant periodic
endowment w0t ≡ w0, care about return and variance of their portfolio,
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LEARNING WHETHER TO BE INFORMED 5

and have to decide how many units of the stock to buy or sell in any
period (what is not spent in stocks will be invested in the bond).

A stream of N news θt = (θ1, θ2, ..., θN)t ∈ RN is available to traders
in any period t = 1, ..., T . We assume that each of the N signals
is identically and independently distributed as N(0, vθ). The careful
reader should notice the lapse between texts, such as the ones listed in
the introduction, and a vector θt of numeric values. For simplicity, we
just suppose that some judgemental or mechanic procedure translates
news (sentences, comments...) into a vector of estimates.

As it will be made clear below, only S ≤ N individual signals θj
will truly affect D̃t. With no loss of generality, we will assume in this
treatment that the first signals θ1, ..., θS are relevant. This simplifies the
exposition but is unknown to agents who must decide by trial-and-error
whether to use signals at all and which ones to use. To keep track of
this learning process, each traders has a strategy bit = (b1, b2, ..., bN)it,
where each bit bj, j = 1, ..., N ∈ {0, 1} denotes if the j-th signal is used:
a value of 1/0 means the signal is used/discarded. Equipped with the
strategy bit at time t, the demand schedule of the i-th agent is

(1) xit(p) =
d+ bitθ

′
t − pR

avit
,

where d > R, vit is an individual assessment of the variance of Dt,
and a can be thought as a risk-aversion coefficient. For tractability, we
assume that the deterministic component d of the payoff is exogenous
and known to agents and a is constant across them. Given the price p,
the demand (1) is, essentially, a ratio of expected excess return of one
unit of stock (in excess of pR that could be gained with the bond) over
perceived risk. Hence, the expected D̃(i)

t for agent i is given by

d+ bitθ
′
t = d+

N∑
j=1

bijtθjt,

and depends on which bits are switched-on in the strategy bit. The
individual demand function xit(p) is then readily obtained.

A unique transaction price p∗t is determined matching the demand
functions of all the agents and solving

(2)
M∑
i=1

xit(p) = 0.
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6 PAOLO PELLIZZARI

Eq. (2) is linear in p and the solution p∗t can be numerically computed
to allow the agents to determine the realised purchases/sales of the
stock, x∗it = xit(p

∗
t |bit, vit), where we stress that the quantity (plainly)

depends also on the individual strategy bit and on vit.
Let the realised stock’s payoff be determined “by nature” as

(3) D̃t = d+ b∗θ′t + εt,

where εt ∼ N(0, vε) and, as said before, b∗ has the first S bits set to
one, (1, ..., 1︸ ︷︷ ︸

S bits

, 0, ..., 0︸ ︷︷ ︸
N−S bits

), so that only S bits out of N affects the payoff.

The profits of agents can now be computed and used to evolve a
new population of strategies, or demand functions, moving from Pt =
{b1t, ..., bMt} to Pt+1 that differs from the old one because some agents
are offered the chance to imitate and mutate their strategy. In detail,
denote the profit of i-th agent at t as:

wit = x∗itDt + (w0 − x∗itp∗t )R− cost · bit1′,

where cost is the cost of acquiring or processing one signal, 1 is the
vector with N ones, (1, ..., 1), and bit1′ is the number of used bits. The
amount wit is consumed or spent elsewhere (and, therefore, agents start
afresh, in terms of wealth, in the next period). Evolution and competi-
tion in the market occurs matching h couples of agents, comparing the
profits and changing the strategic profile (bi, vi). When, say, traders r
and s are matched:

(4) If wrt ≥ wst then

{
bs,t+1 = brt,

vs,t+1 = vrtŨ(1− q, 1 + q),

where q > 0 is a small number and U(a, b) is a uniform random variable
in ]a, b[. Formula (4) describes how, if agent r outperformed agent s,
the latter copies the strategy of the former and replaces his vs with a
random multiplicatively shocked vr. Observe that each pair (r, s) of
agents is randomly formed and, hence, there is no deliberate attempt
to imitate or cherry-pick successful traders. Moreover, the straight
comparison of revenues in (4) is entirely justified by the constant risk-
aversion parameters. In each period, we also allow a single mutation,
flipping a random bit of a random trader’s strategy.

Electronic copy available at: https://ssrn.com/abstract=4706253



LEARNING WHETHER TO BE INFORMED 7

Among the 2N strategies that can be evolved, two turn out to be
prominent in the following: we will refer to agents with bi = b∗ as in-
formed, in that they come to know and use in their demand all the rel-
evant bits in Eqs. (1,3); we call passive the agents with bi = (0, 0, ..., 0)

as they do not use any signal and resort to a very simple constant
expected value for D, namely d.

The following example will clarify the mechanics: at (the beginning
of) a given time t (omitted in the sequel), with N = 5, cost = 0.01, d =

1.1, R = 1.01, a = 2 and b∗ = (1, 1, 1, 0, 0), the first and second agents
have v1 = 0.025, b1 = (1, 1, 1, 0, 0), v2 = 0.055 and b2 = (0, 0, 0, 0, 0).
The first agent is informed, employing all relevant bits and paying
a total cost of 0.03 per period, whereas the second agent does not
use any information (and has null cost). If the vector of signals is
θt = (0.03,−0.05, 0.07, 0.01,−0.05) and, based on the demand schedule
of all agents, p∗t = 1.11, accordingly the realised demands are

x∗1 =
d+ b1θ

′
t − p∗tR
av1

=
1.1 + 0.05− 1.11 · 1.01

2 · 0.02
= 0.578,

x∗2 =
d+ b2θ

′
t − p∗tR
av2

=
1.1 + 0− 1.11 · 1.01

2 · 0.055
= −0.192,

meaning that, at the equilibrium price 1.11 prevailing at time t, the
informed trader buys 0.578 units of the stock and the passive one sells
0.192 units. Now, εt is drawn and payoffs can be computed: let the
random value be, for instance, εt = −0.1 so that

Dt = d+ b∗θ′t + εt = 1.1 + 0.05− 0.1 = 1.05.

Observe that the payoff is smaller than the price and, as a consequence,
net buyers/sellers will experience a loss/gain. Indeed,

w1t = x1tDt + (w0 − x1tp∗t )R− 3 · cost

= 0.578 · 1.05 + (1− 0.578 · 1.11) · 1.01− 0.03 = 0.939,

w2t = x2tDt + (w0 − x2tp∗t )R− 0 · cost

= −0.192 · 1.05 + (1 + 0.192 · 1.11) · 1.01 = 1.024.

Hence, due to the (relatively large) negative ε and to other “unlucky”
events, the first agent happens to record a loss and the second agent
a gain. We stress that this outcome holds at time t, due to the values
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8 PAOLO PELLIZZARI

taken by the random variables involved in this period (i.e., θt, εt) and
to the shares of different strategies in the population that ultimately
contribute to determine the current p∗t = 1.11. Other realisations would
obviously have produced different w1t and w2t for the two agents in our
example. Assume now that in the learning phase the previous two
agents are randomly matched: the first trader (painfully) realises that
the second trader outperformed him by about 8% in period t and,
therefore, he imitates the other strategy and variance, so that b1,t+1 =

(0, 0, 0, 0, 0) and his variance will move to v1,t+1 = v2tŨ , for a random Ũ .
The second trader does not change in any way his strategy/parameters
and is ready to begin period t+ 1.

In a standard application of evolutionary game theory, we are in-
terested in looking at the features of the stationary population Pt, for
t→∞.

3. Results

We run 100 simulations for each N = 5, 10, 15, using T = 10000

periods and setting the other parameters as in Table 1.

Table 1. Values and description of the parameters.

Param Value Description Param Value Description
vε { 2

100
, 3
100
, 4
100
} Variance of ε vθ 0.01 Variance of θ

R 1.01 Bond yield d 1.10 Stock yield
a 2 Risk aversion q 0.1 Variance adjust-

ment
S {1, ..., 5} # of bits M 1000 # of agents

w0i ≡ w0 1 Endowment cost 0.01 Cost of informa-
tion

bi Initialised with random bits, then subject to learning and mutation
vi Initialised at vε, then subject to random shocks

Both N and vε can, to some extent, quantify the complexity of infor-
mational extraction in a market: a large N corresponds to situations
where agents are exposed to many signals and, especially for small
values of S, this means that relatively few relevant signals must be
carefully picked (out of the possible N). Besides being a direct mea-
sure of the volatility of the payoff, vε affects the signal-to-noise ratio
that is proxied by vθ

vε
or, in other words, ceteris paribus, signals are
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LEARNING WHETHER TO BE INFORMED 9

expected to be more valuable when vε is smaller and, in such sense, vε
can be thought as an “adjusted price” of information.

Table 2. Number of agents using the most common
strategies (All figures are averages over 100 simulations).

N = 5 N = 10 N = 15
Top 1 strat. 387.20 375.53 373.19
Top 2 strat. 574.74 563.17 577.09
Top 5 strat. 765.86 694.56 691.06
Inf + Pas 549.64 554.37 561.34

Generally speaking, the strategies surviving at equilibrium (i.e., in
PT that proxies P∞)) are only a tiny fraction of the possible ones and
this is a robust finding holding in all parametrizations. Table 2 shows
the number of agents using the most common, the two and the five
most common strategies. For instance, when N = 5, the two most
frequent strategies are used on average by 575 agents (out of 1000).
In other words, a fraction of 2/32 ≈ 6% of the strategies account for
57.5% of agents in equilibrium. Usually, the most used 5 strategies are
taken by about 70% of agents or more. The concentration into very
few strategies is striking if one thinks that there are 210 = 1024 and
215 = 32768 strategies when N = 10 and 15.

The last row of Table 2 shows the average number of agents who
selected either the informed (bi = b∗) or the passive strategy (bi =

0). A comparison of the second and the ’Inf + Pas’ row reveals that,
essentially, the two most used strategies are precisely the informed and
the passive one. Hence, evolution drives most of the agents to pick
exactly one between these two strategies, despite the availability of
tens (or hundreds or thousands) of alternatives.

Not only agents concentrate on 2 (or very few) strategies but use less
information than may be naively expected. From the seminal work in
[Grossman and Stiglitz, 1980] we know that enough informed traders
should in principle allow the others to deduce or “smell” what is needed
even with no direct access to the information itself. However, the extent
to which this happens is probably surprising.
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Table 3. Use of information: shares of relevant bits set
and overall share (All figures are averages over 100 sim-
ulations.

N = 5 N = 10 N = 15
Overall Relevant Overall Relevant Overall Relevant

0.02 0.241 0.225 0.251 0.216 0.256 0.214
vε 0.03 0.165 0.149 0.187 0.156 0.189 0.152

0.04 0.154 0.141 0.166 0.141 0.165 0.133

Table 3 shows the fraction of bits set to 1 by the whole population
of traders and the fraction of relevant bits4, as a function of N and vε.
The number of used bits does not depend much on N but it is quite
sensitive to the variance (price of information): regardless of N , the
fraction of 1-bits drops, say, from one-quarter to about 16% as vε varies
from 0.02 to 0.04.

Put differently, the model points to a low use of information that is
discarded by many traders in our noisy setup where strategies compete
on short-term profits. Table 4, showing the fraction of informed and
passive agents, provides additional details.

Table 4. Percentage of informed and passive traders.
All figures are averages over 100 simulations.

N = 5 N = 10 N = 15
Informed Passive Informed Passive Informed Passive

0.02 0.440 0.067 0.402 0.101 0.369 0.111
vε 0.03 0.346 0.232 0.299 0.272 0.291 0.291

0.04 0.253 0.325 0.221 0.391 0.245 0.380

First, scanning the table horizontally, it can be seen that the fraction
of informed traders decreases with increasing complexity, as measured
by N (for any level of vε). The effect is more pronounced when vε is
low or medium.

Second, the fraction of informed agents sharply decreases with vε.
For instance, when N = 10, doubling vε roughly halves the fraction of
informed traders (from 40.2% to 22.1%). This hints at the fact that
(the same) information is less useful when embedded in noisier markets
or, if you wish, when it is more expensive in relative terms.

4The “overall” number of set bits is (# of set bit) /NM and the number of “relevant”
bits is (# of set bits / SM).
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LEARNING WHETHER TO BE INFORMED 11

Third, a similar portrait surfaces looking at the number of passive
traders, the ones who decide not to use any signal at equilibrium.
Their number is inversely proportional to that of informed traders and,
hence, in general there are more such agents for large N and vε. The
intuition is that passive agents are better equipped to survive in more
volatile markets, flooded with plenty of information. Simply put, in
such “difficult” environments, discarding all signals and avoiding any
cost is often the most commonly evolved strategy (picked in equilibrium
by nearly 40% of agents in some cases). Interestingly, there are several
values of the parameters (depicting somewhat realistic markets) where
the passive traders outnumber the informed one, a finding that goes
against the conventional wisdom that using (good) information should
be better than discarding it.

Figure 1. Number of passive (on the x-axis) and in-
formed traders (on the y-axis) in three different mar-
kets: low informational complexity on the top-left cor-
ner, for N = 5, vε = 0.02, and high informational com-
plexity moving down to the bottom-right corner, where
N = 15, vε = 0.04. The dashed diagonal line is where
the two numbers are the same.

Figure 1 depicts the number of passive and informed agents (out
of 1000) and visually reinforces the previous claims: on the top left
corner there is one green triangle for each simulation, with N = 5, vε =

0.02 (low complexity), and few passive agents are outnumbered by

Electronic copy available at: https://ssrn.com/abstract=4706253



12 PAOLO PELLIZZARI

many informed ones. At the other extreme, red circles show that the
situation reverses when N = 15, vε = 0.04 (high complexity). Black
squares depict simulations with N = 10, vε = 0.03 in which members
of the two subpopulations are roughly equal in number. This is in good
accordance with the fractions exhibited in the central cell of Table 4.

N

In
di

vi
du

al
 ri

sk

N=5 N=10 N=15

0.
01

0.
03

0.
05

Figure 2. Distributions of individual risk for different
N and levels of vε = 0.02, 0.03, 0.04 in red, green and
black, respectively.

The equilibrium shares of strategies are characterised by bit-strings
bi, i = 1, ..., 1000, but also by the individual risk assessments vi that
appear in the denominator of Eq. (1). Figure 2 represents through
box-plots the distributions of the set of vi, i = 1, ..., 1000, for markets
with N = 5, 10, 15 (from left to right) and vε = 0.02 (green), vε = 0.03

(grey) and vε = 0.04 (red). For instance, the median vi when N =

10, vε = 0.03 is about 0.035, as shown by the black line in the central
grey box-plot, and most values are in an interval whose lower/upper
extremes are slightly smaller/bigger than 0.03/0.04, respectively. The
figure shows that the risk perceived by agents is mildly increasing with
N , for whatever vε.

More importantly, it is worth noticing that when vε = 0.02 the per-
ceived risk is, on average, smaller than 0.02, whereas for higher vε agents
on average evolve a much higher assessment. This is particularly true
for (large) vε such as 0.04, as the red box-plots show substantially large
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LEARNING WHETHER TO BE INFORMED 13

medians about 0.05. In other words, when the volatility of the mar-
kets is low, agents learn to slightly underestimate the noise level in
the market; conversely, when the volatility is higher, and especially for
vε = 0.04, they learn to overestimate the riskiness of the stock. As
a consequence, because the vi are in the denominator of the demand
function, they take larger equity positions (than would perhaps be ex-
pected) when the volatility of the market is low, and reduce the risky
component of their investments when the volatility is high. This be-
haviour, aggressive as well as cautious in different cases, appears to
curb the probability of financial extinction of agents’ current strategy
in our setup where sustained evolutionary competition is present.

As seen before, the number of passive traders is relatively large in
markets with high vε and, consistently with this fact, passive traders
evolve higher vi. Hence, they not only discard information in building
their portfolio but demand less units of the risky stock (other things
being fixed) in an attempt to take into account the residual risk of not
being informed. Symmetrically, informed agents use all the relevant
information and boost their demand through lower vis5.

4. Conclusion

The model described in this paper depicts a market where only S

pieces of news out of N affects the stochastic payoff of a risky stock.
News/information are available at a cost in any period t and bound-
edly rational agents must figure out (or learn through evolution) which
signal to use in forming their demand for the risky asset. Agents’ de-
mands (phenotypes) are driven by strategies (genotypes) prescribing
the signal to use/discard and by an adjustable assessment of risk. Up-
dates occur through pairwise comparisons (or tournaments) aiming at
favouring the strategies yielding the highest payoffs. A small rate of
mutation ensures that adequate diversity is preserved in learning.

We have examined which strategy prevail in the long run and their
shares in the population Pt, t→∞ of heterogeneous agents. This can

5Another interpretation leads to overconfidence on the part of informed traders:
in principle, once all relevant component of θt are used, there is no intrinsic noise
other than ε and super-rational agents should set vi = vε. The model shows that
there is evolutionary pressure to adjust downwards the individual risk assessment,
or, that it pays off for the informed to be overconfident at equilibrium.
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be thought as a canonical evolutionary model where fitter strategies
are determined by sharp pairwise comparison of profits, and tend to
grow along time.

We found that most traders evolve (or learn) either a passive strategy
discarding all signals or a fully informed strategy, where all relevant sig-
nals are incorporated in the estimation of the future payoffs (sustaining
the costs). Whether the passive or informed strategy takes the lion’s
share mostly depends on the “complexity” of the market: if the exoge-
nous volatility or the number of news N are large, most traders will be
passive and use no information whatsoever; if, instead, the volatility
is low and the informational landscape has manageable size and costs,
then a majority of agents will develop informed strategies. This polar-
ity between full usage and full disregard of information fits well with
models in the spirit of [Schredelseker, 2014], where it is shown that re-
turns are U-shaped in terms of information and, hence, being entirely
uninformed (passive in our setup) or fully informed is more profitable
than being half-way on either side.

Overall, the model is demonstrating that it may impossible for bound-
edly rational agents to exploit all the information or disentangle rele-
vant from irrelevant news in volatile market setups or when too much
information is provided and must be screened. The model shows that
fact-based learning by trial-and-error and imitation (plus mutation),
does not allow full exploitation of relevant information. It is left to
future research to investigate whether the same results hold for other
learning schemes (or using other ways to spread fitter strategies). For
example, the probability to adopt a better strategy in a pair may be
proportional to the returns, instead of being 100%. While our switching
rule may appear dummy, agents have a nice way to rationalise their be-
haviour as, in equilibrium, all strategies have the same median returns
and, say, passive agents have a 50% chance to over-perform informed
trader, i.e. they would fare first one time out of two in a race.
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A byproduct of the model possibly hints at a novel way to explain
why many investors appear to hold an excessively small share of eq-
uity6, see [Robson and Orr, 2021] for an explanation based on biolog-
ical evolution. In our model, for many values of the parameters, the
passive traders, who demand little equity due to their large vi’s, are the
majority share and this leads in aggregate to a limited (relative) share
of risky holdings with respect to risk-less investments, in line with the
historical simulation in [Benartzi and Thaler, 1995].
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