Multi-Source Diffusion Models (MSDM) allow for compositional musical generation tasks: generating a set of coherent sources, creating accompaniments, and performing source separation. Despite their versatility, they require estimating the joint distribution over the sources, necessitating pre-separated musical data, which is rarely available, and fixing the number and type of sources at training time. This paper generalizes MSDM to arbitrary time-domain diffusion models conditioned on text embeddings. These models do not require separated data as they are trained on mixtures, can parameterize an arbitrary number of sources, and allow for rich semantic control. We propose an inference procedure enabling the coherent generation of sources and accompaniments. Additionally, we adapt the Dirac separator of MSDM to perform source separation. We experiment with diffusion models trained on Slakh2100 and MTG-Jamendo, showcasing competitive generation and separation results in a relaxed data setting.

GENERALIZED MULTI-SOURCE INFERENCE FOR TEXT CONDITIONED MUSIC DIFFUSION MODELS

Postolache E.;Cosmo L.;Rodola E.
2024-01-01

Abstract

Multi-Source Diffusion Models (MSDM) allow for compositional musical generation tasks: generating a set of coherent sources, creating accompaniments, and performing source separation. Despite their versatility, they require estimating the joint distribution over the sources, necessitating pre-separated musical data, which is rarely available, and fixing the number and type of sources at training time. This paper generalizes MSDM to arbitrary time-domain diffusion models conditioned on text embeddings. These models do not require separated data as they are trained on mixtures, can parameterize an arbitrary number of sources, and allow for rich semantic control. We propose an inference procedure enabling the coherent generation of sources and accompaniments. Additionally, we adapt the Dirac separator of MSDM to perform source separation. We experiment with diffusion models trained on Slakh2100 and MTG-Jamendo, showcasing competitive generation and separation results in a relaxed data setting.
2024
ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
File in questo prodotto:
File Dimensione Formato  
2403.11706v1.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Accesso gratuito (solo visione)
Dimensione 423.88 kB
Formato Adobe PDF
423.88 kB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/5080982
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact