The effectiveness of defect prediction depends on modeling techniques as well as their parameter optimization, data preprocessing and ensemble development. This paper focuses on auto-sklearn, which is a recently-developed software library for automated machine learning, that can automatically select appropriate prediction models, hyperparameters and data preprocessing techniques for a given data set and develop their ensemble with optimized weights. In this paper we empirically evaluate the effectiveness of auto-sklearn in predicting the number of defects in software modules. In the experiment, we used software metrics of 20 OSS projects for cross-release defect prediction and compared auto-sklearn with random forest, decision tree and linear discriminant analysis by using Norm(Popt) as a performance measure. As a result, auto-sklearn showed similar prediction performance as random forest, which is one of the best prediction models for defect prediction in past studies. This indicates that auto-sklearn can obtain good prediction performance for defect prediction without any knowledge of machine learning techniques and models.

Prediction of Software Defects Using Automated Machine Learning

Yucel, Zeynep
2019-01-01

Abstract

The effectiveness of defect prediction depends on modeling techniques as well as their parameter optimization, data preprocessing and ensemble development. This paper focuses on auto-sklearn, which is a recently-developed software library for automated machine learning, that can automatically select appropriate prediction models, hyperparameters and data preprocessing techniques for a given data set and develop their ensemble with optimized weights. In this paper we empirically evaluate the effectiveness of auto-sklearn in predicting the number of defects in software modules. In the experiment, we used software metrics of 20 OSS projects for cross-release defect prediction and compared auto-sklearn with random forest, decision tree and linear discriminant analysis by using Norm(Popt) as a performance measure. As a result, auto-sklearn showed similar prediction performance as random forest, which is one of the best prediction models for defect prediction in past studies. This indicates that auto-sklearn can obtain good prediction performance for defect prediction without any knowledge of machine learning techniques and models.
2019
Proc. International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, (SNPD 2019),
File in questo prodotto:
File Dimensione Formato  
c_23_snpd_prediction.pdf

non disponibili

Tipologia: Documento in Pre-print
Licenza: Copyright dell'editore
Dimensione 63.65 kB
Formato Adobe PDF
63.65 kB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/5080108
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 8
social impact