The dual-channel assumption of the cognitive theory of multimedia learning suggests that importing a large amount of information through a single (visual or audio) channel overloads that channel, causing partial loss of information, while importing it simultaneously through multiple channels relieves the burden on them and leads to the registration of a larger amount of information. In light of such knowledge, this study investigates the possibility of reinforcing visual stimuli with audio for supporting e-learners in memorization tasks. Specifically, we consider three kinds of learning material and two kinds of audio stimuli and partially reinforce each kind of material with each kind of stimuli in an arbitrary way. In a series of experiments, we determine the particular type of audio, which offers the highest improvement for each kind of material. Our work stands out as being the first study investigating the differences in memory performance in relation to different combinations of learning content and stimulus. Our key findings from the experiments are: (i) E-learning is more effective in refreshing memory rather than studying from scratch, (ii) Non-informative audio is more suited to verbal content, whereas informative audio is better for numerical content, (iii) Constant audio triggering degrades learning performance and thus audio triggering should be handled with care. Based on these findings, we develop an ANN-based estimator to determine the proper moment for triggering audio (i.e. when memory performance is estimated to be declining) and carry out follow-up experiments for testing the integrated framework. Our contributions involve (i) determination of the most effective audio for each content type, (ii) estimation of memory deterioration based on learners' interaction logs, and (iii) the proposal of improvement of memory registration through auditory reinforcement. We believe that such findings constitute encouraging evidence the memory registration of e-learners can be enhanced with content-aware audio incorporation.

Artificial Neural Network Based Audio Reinforcement for Computer Assisted Rote Learning

Yucel Z.;
2023-01-01

Abstract

The dual-channel assumption of the cognitive theory of multimedia learning suggests that importing a large amount of information through a single (visual or audio) channel overloads that channel, causing partial loss of information, while importing it simultaneously through multiple channels relieves the burden on them and leads to the registration of a larger amount of information. In light of such knowledge, this study investigates the possibility of reinforcing visual stimuli with audio for supporting e-learners in memorization tasks. Specifically, we consider three kinds of learning material and two kinds of audio stimuli and partially reinforce each kind of material with each kind of stimuli in an arbitrary way. In a series of experiments, we determine the particular type of audio, which offers the highest improvement for each kind of material. Our work stands out as being the first study investigating the differences in memory performance in relation to different combinations of learning content and stimulus. Our key findings from the experiments are: (i) E-learning is more effective in refreshing memory rather than studying from scratch, (ii) Non-informative audio is more suited to verbal content, whereas informative audio is better for numerical content, (iii) Constant audio triggering degrades learning performance and thus audio triggering should be handled with care. Based on these findings, we develop an ANN-based estimator to determine the proper moment for triggering audio (i.e. when memory performance is estimated to be declining) and carry out follow-up experiments for testing the integrated framework. Our contributions involve (i) determination of the most effective audio for each content type, (ii) estimation of memory deterioration based on learners' interaction logs, and (iii) the proposal of improvement of memory registration through auditory reinforcement. We believe that such findings constitute encouraging evidence the memory registration of e-learners can be enhanced with content-aware audio incorporation.
2023
11
File in questo prodotto:
File Dimensione Formato  
j_24_ieee_access_artificial.pdf

accesso aperto

Tipologia: Versione dell'editore
Licenza: Accesso gratuito (solo visione)
Dimensione 1.4 MB
Formato Adobe PDF
1.4 MB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/5079741
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact