Digital tools and services collect a growing amount of log data. In the software development industry, such data are integral and boast valuable information on user and system behaviors with a significant potential of discovering various trends and patterns. In this study, we focus on one of those potential aspects, which is task estimation. In that regard, we perform a case study by analyzing computer recorded activities of employees from a software development company. Specifically, our purpose is to identify the task of each employee. To that end, we build a hierarchical framework with a 2-stage recognition and devise a method relying on Bayesian estimation which accounts for temporal correlation of tasks. After pre-processing, we run the proposed hierarchical scheme to initially distinguish infrequent and frequent tasks. At the second stage, infrequent tasks are discriminated between them such that the task is identified definitively. The higher performance rate of the proposed method makes it favorable against the association rule-based methods and conventional classification algorithms. Moreover, our method offers significant potential to be implemented on similar software engineering problems. Our contributions include a comprehensive evaluation of a Bayesian estimation scheme on real world data and offering reinforcements against several challenges in the data set (samples with different measurement scales, dependence characteristics, imbalance, and with insignificant pieces of information).

Task estimation for software company employees based on computer interaction logs

Yucel Z.;
2021-01-01

Abstract

Digital tools and services collect a growing amount of log data. In the software development industry, such data are integral and boast valuable information on user and system behaviors with a significant potential of discovering various trends and patterns. In this study, we focus on one of those potential aspects, which is task estimation. In that regard, we perform a case study by analyzing computer recorded activities of employees from a software development company. Specifically, our purpose is to identify the task of each employee. To that end, we build a hierarchical framework with a 2-stage recognition and devise a method relying on Bayesian estimation which accounts for temporal correlation of tasks. After pre-processing, we run the proposed hierarchical scheme to initially distinguish infrequent and frequent tasks. At the second stage, infrequent tasks are discriminated between them such that the task is identified definitively. The higher performance rate of the proposed method makes it favorable against the association rule-based methods and conventional classification algorithms. Moreover, our method offers significant potential to be implemented on similar software engineering problems. Our contributions include a comprehensive evaluation of a Bayesian estimation scheme on real world data and offering reinforcements against several challenges in the data set (samples with different measurement scales, dependence characteristics, imbalance, and with insignificant pieces of information).
File in questo prodotto:
File Dimensione Formato  
j_18_empirical_task.pdf

non disponibili

Tipologia: Versione dell'editore
Licenza: Copyright dell'editore
Dimensione 2.12 MB
Formato Adobe PDF
2.12 MB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/5079685
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact