A critical piece of the modern information retrieval puzzle is approximate nearest neighbor search. Its objective is to return a set of k data points that are closest to a query point, with its accuracy measured by the proportion of exact nearest neighbors captured in the returned set. One popular approach to this question is clustering: The indexing algorithm partitions data points into non-overlapping subsets and represents each partition by a point such as its centroid. The query processing algorithm first identifies the nearest clusters - -a process known as routing - -then performs a nearest neighbor search over those clusters only. In this work, we make a simple observation: The routing function solves a ranking problem. Its quality can therefore be assessed with a ranking metric, making the function amenable to learning-to-rank. Interestingly, ground-truth is often freely available: Given a query distribution in a top-k configuration, the ground-truth is the set of clusters that contain the exact top-k vectors. We develop this insight and apply it to Maximum Inner Product Search (MIPS). As we demonstrate empirically on various datasets, learning a simple linear function consistently improves the accuracy of clustering-based MIPS.

A Learning-to-Rank Formulation of Clustering-Based Approximate Nearest Neighbor Search

Vecchiato T.;Lucchese C.;Bruch S.
2024-01-01

Abstract

A critical piece of the modern information retrieval puzzle is approximate nearest neighbor search. Its objective is to return a set of k data points that are closest to a query point, with its accuracy measured by the proportion of exact nearest neighbors captured in the returned set. One popular approach to this question is clustering: The indexing algorithm partitions data points into non-overlapping subsets and represents each partition by a point such as its centroid. The query processing algorithm first identifies the nearest clusters - -a process known as routing - -then performs a nearest neighbor search over those clusters only. In this work, we make a simple observation: The routing function solves a ranking problem. Its quality can therefore be assessed with a ranking metric, making the function amenable to learning-to-rank. Interestingly, ground-truth is often freely available: Given a query distribution in a top-k configuration, the ground-truth is the set of clusters that contain the exact top-k vectors. We develop this insight and apply it to Maximum Inner Product Search (MIPS). As we demonstrate empirically on various datasets, learning a simple linear function consistently improves the accuracy of clustering-based MIPS.
2024
SIGIR 2024 - Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval
File in questo prodotto:
File Dimensione Formato  
3626772.3657931.pdf

non disponibili

Tipologia: Versione dell'editore
Licenza: Accesso chiuso-personale
Dimensione 1.45 MB
Formato Adobe PDF
1.45 MB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/5078522
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact