Automatic Face Emotion Recognition (FER) technologies have become widespread in various applications, including surveillance, human–computer interaction, and health care. However, these systems are built on the basis of controversial psychological models that claim facial expressions are universally linked to specific emotions—a concept often referred to as the “universality hypothesis”. Recent research highlights significant variability in how emotions are expressed and perceived across different cultures and contexts. This paper identifies a gap in evaluating the reliability and ethical implications of these systems, given their potential biases and privacy concerns. Here, we report a comprehensive review of the current debates surrounding FER, with a focus on cultural and social biases, the ethical implications of their application, and their technical reliability. Moreover, we propose a classification that organizes these perspectives into a three-part taxonomy. Key findings show that FER systems are built with limited datasets with potential annotation biases, in addition to lacking cultural context and exhibiting significant unreliability, with misclassification rates influenced by race and background. In some cases, the systems’ errors lead to significant ethical concerns, particularly in sensitive settings such as law enforcement and surveillance. This study calls for more rigorous evaluation frameworks and regulatory oversight, ensuring that the deployment of FER systems does not infringe on individual rights or perpetuate biases.

Not in My Face: Challenges and Ethical Considerations in Automatic Face Emotion Recognition Technology

Martina Mattioli
;
2024-01-01

Abstract

Automatic Face Emotion Recognition (FER) technologies have become widespread in various applications, including surveillance, human–computer interaction, and health care. However, these systems are built on the basis of controversial psychological models that claim facial expressions are universally linked to specific emotions—a concept often referred to as the “universality hypothesis”. Recent research highlights significant variability in how emotions are expressed and perceived across different cultures and contexts. This paper identifies a gap in evaluating the reliability and ethical implications of these systems, given their potential biases and privacy concerns. Here, we report a comprehensive review of the current debates surrounding FER, with a focus on cultural and social biases, the ethical implications of their application, and their technical reliability. Moreover, we propose a classification that organizes these perspectives into a three-part taxonomy. Key findings show that FER systems are built with limited datasets with potential annotation biases, in addition to lacking cultural context and exhibiting significant unreliability, with misclassification rates influenced by race and background. In some cases, the systems’ errors lead to significant ethical concerns, particularly in sensitive settings such as law enforcement and surveillance. This study calls for more rigorous evaluation frameworks and regulatory oversight, ensuring that the deployment of FER systems does not infringe on individual rights or perpetuate biases.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/5077781
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact