Excitons are realizations of a correlated many-particle wave function, specifically consisting of electrons and holes in an entangled state. Excitons occur widely in semiconductors and are dominant excitations in semiconducting organic and low-dimensional quantum materials. To efficiently harness the strong optical response and high tuneability of excitons in optoelectronics and in energy-transformation processes, access to the full wavefunction of the entangled state is critical, but has so far not been feasible. Here, we show how time-resolved photoemission momentum microscopy can be used to gain access to the entangled wavefunction and to unravel the exciton's multiorbital electron and hole contributions. For the prototypical organic semiconductor buckminsterfullerene (C60), we exemplify the capabilities of exciton tomography and achieve unprecedented access to key properties of the entangled exciton state including localization, charge-transfer character, and ultrafast exciton formation and relaxation dynamics.Understanding excitonic optical excitations is integral to improving optoelectronic and photovoltaic semiconductor devices. Here, Bennecke et al. use photoemission exciton tomography to unravel the multiorbital electron and hole contributions of entangled excitonic states in the prototypical organic semiconductor C60.
Disentangling the multiorbital contributions of excitons by photoemission exciton tomography
D'Avino, Gabriele;
2024-01-01
Abstract
Excitons are realizations of a correlated many-particle wave function, specifically consisting of electrons and holes in an entangled state. Excitons occur widely in semiconductors and are dominant excitations in semiconducting organic and low-dimensional quantum materials. To efficiently harness the strong optical response and high tuneability of excitons in optoelectronics and in energy-transformation processes, access to the full wavefunction of the entangled state is critical, but has so far not been feasible. Here, we show how time-resolved photoemission momentum microscopy can be used to gain access to the entangled wavefunction and to unravel the exciton's multiorbital electron and hole contributions. For the prototypical organic semiconductor buckminsterfullerene (C60), we exemplify the capabilities of exciton tomography and achieve unprecedented access to key properties of the entangled exciton state including localization, charge-transfer character, and ultrafast exciton formation and relaxation dynamics.Understanding excitonic optical excitations is integral to improving optoelectronic and photovoltaic semiconductor devices. Here, Bennecke et al. use photoemission exciton tomography to unravel the multiorbital electron and hole contributions of entangled excitonic states in the prototypical organic semiconductor C60.I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.