Predicting magnetism originating from 2p orbitals is a delicate problem, which depends on the subtle interplay between covalency and Hund's coupling. Calculations based on density-functional theory and the local spin-density approximation fail in two remarkably different ways. On one hand the excessive delocalization of spin-polarized holes leads to half-metallic ground states and the expectation of room-temperature ferromagnetism. On the other hand, in some cases a magnetic ground state may not be predicted at all. We demonstrate that a simple self-interaction correction scheme modifies both these situations via an enhanced localization of the holes responsible for the magnetism and possibly Jahn-Teller distortion. In both cases the ground state becomes insulating and the magnetic coupling between the impurities becomes weak.

Predicting d0 magnetism: Self-interaction correction scheme

Droghetti, A.
Investigation
;
2008-01-01

Abstract

Predicting magnetism originating from 2p orbitals is a delicate problem, which depends on the subtle interplay between covalency and Hund's coupling. Calculations based on density-functional theory and the local spin-density approximation fail in two remarkably different ways. On one hand the excessive delocalization of spin-polarized holes leads to half-metallic ground states and the expectation of room-temperature ferromagnetism. On the other hand, in some cases a magnetic ground state may not be predicted at all. We demonstrate that a simple self-interaction correction scheme modifies both these situations via an enhanced localization of the holes responsible for the magnetism and possibly Jahn-Teller distortion. In both cases the ground state becomes insulating and the magnetic coupling between the impurities becomes weak.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/5070946
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 131
  • ???jsp.display-item.citation.isi??? 132
social impact