In this contribution, we consider a Multi-Layer Perceptron (MLP) methodology for predicting specific gift features, particularly the count of donations and the gift amounts. Moreover, we use Garson’s indicator to evaluate the relative importance of the input variables to the output(s) in the MLP model with the aim of enhancing the effectiveness of fundraising campaigns. In the discussed application, the Donors’ behaviors are estimated using a simulated dataset that includes individual characteristics and information about donation history.

Input Relevance in Multi-Layer Perceptron for Fundraising

Barro, Diana;Barzanti, Luca;Corazza, Marco;Nardon, Martina
2024-01-01

Abstract

In this contribution, we consider a Multi-Layer Perceptron (MLP) methodology for predicting specific gift features, particularly the count of donations and the gift amounts. Moreover, we use Garson’s indicator to evaluate the relative importance of the input variables to the output(s) in the MLP model with the aim of enhancing the effectiveness of fundraising campaigns. In the discussed application, the Donors’ behaviors are estimated using a simulated dataset that includes individual characteristics and information about donation history.
2024
Mathematical and Statistical Methods for Actuarial Sciences and Finance. MAF 2024
File in questo prodotto:
File Dimensione Formato  
InputRelevanceinMulti-LayerPerceptronFundraising_MAF2024_published.pdf

non disponibili

Tipologia: Versione dell'editore
Licenza: Copyright dell'editore
Dimensione 1.32 MB
Formato Adobe PDF
1.32 MB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/5068305
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact