Through this work, a family of sulfonamide functionalized mesoporous materials as sustainable heterogeneous catalysts has been successfully synthesized by employing sulfaguanidine, sulfathiazole, and sulfadiazine. The samples were fully characterized using a multitechnique approach. Such materials have proved to be highly versatile and catalytically active in both the advances in the hydrogenation of Levulinic acid through heterogeneous catalytic transfer hydrogenation (CTH) and oxidation reactions with a strong emphasis on discussing morphology and structure of versatile catalysts, plausible mechanism, and performance of the catalysts for biomass valorization of renewable feedstock. In particular, the prepared catalytic systems were tested in levulinic acid transformation into γ-Valerolactone, achieving a maximum conversion of 99% and a selectivity of 90% for the sulfaguanidine modified sample. The three nanocatalysts displayed good stability over four reuse cycles, and by considering the results of a hot filtration test, it is confirmed that the nature of the catalysis is heterogeneous as acid-base pairs and functionalized groups on catalytic activation of C–H and C[dbnd]O bonds for transfer hydrogenation of levulinic acid. Moreover, such samples also showed remarkable results in the oxidation of benzyl alcohol towards benzaldehyde, with conversion and selectivity values of 95% and 97%, respectively. The obtained catalytic results are highly promising for biomass upgrading processes, looking forward to a more sustainable future.

Versatile functionalized mesoporous Zr/SBA-15 for catalytic transfer hydrogenation and oxidation reactions

Rodriguez-Padron Daily
2021-01-01

Abstract

Through this work, a family of sulfonamide functionalized mesoporous materials as sustainable heterogeneous catalysts has been successfully synthesized by employing sulfaguanidine, sulfathiazole, and sulfadiazine. The samples were fully characterized using a multitechnique approach. Such materials have proved to be highly versatile and catalytically active in both the advances in the hydrogenation of Levulinic acid through heterogeneous catalytic transfer hydrogenation (CTH) and oxidation reactions with a strong emphasis on discussing morphology and structure of versatile catalysts, plausible mechanism, and performance of the catalysts for biomass valorization of renewable feedstock. In particular, the prepared catalytic systems were tested in levulinic acid transformation into γ-Valerolactone, achieving a maximum conversion of 99% and a selectivity of 90% for the sulfaguanidine modified sample. The three nanocatalysts displayed good stability over four reuse cycles, and by considering the results of a hot filtration test, it is confirmed that the nature of the catalysis is heterogeneous as acid-base pairs and functionalized groups on catalytic activation of C–H and C[dbnd]O bonds for transfer hydrogenation of levulinic acid. Moreover, such samples also showed remarkable results in the oxidation of benzyl alcohol towards benzaldehyde, with conversion and selectivity values of 95% and 97%, respectively. The obtained catalytic results are highly promising for biomass upgrading processes, looking forward to a more sustainable future.
2021
178
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/5058882
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
social impact