In this work, we studied the effect of alkali-activated zeolite foams modifications on properties and catalytic activity of cobalt phases in the process of catalytic decomposition of N2 O. The zeolite foam supports were prepared by alkali activation of natural zeolite followed by acid leaching and ion exchange. The cobalt catalysts were synthesised by a different deposition technique (direct ion exchange (DIE) and incipient wetness impregnation (IWI) method of cobalt on zeolite foams. For comparison, catalysts on selected supports were prepared and the properties of all were compared in catalytic tests in the pellet form and as crushed catalysts to determine the effect of internal diffusion. The catalysts and supports were in detail characterized by a variety of techniques. The catalyst activity strongly depended on the structure of support and synthesis procedure of a cobalt catalyst. Ion exchange method provided active phase with higher surface areas and sites with better reducibility, both of these factors contributed to higher N2 O conversions of more than 80% at 450◦ C. A large influence can also be attributed to the presence of alkali metals, in particular, potassium, which resulted in a modification of electronic and acid base properties of the cobalt oxide phase on the catalyst surface. The promotional effect of potassium is better reducibility of cobalt species.

Cobalt based catalysts on alkali-activated zeolite foams for n2 o decomposition

Rodriguez-Padron Daily;
2020-01-01

Abstract

In this work, we studied the effect of alkali-activated zeolite foams modifications on properties and catalytic activity of cobalt phases in the process of catalytic decomposition of N2 O. The zeolite foam supports were prepared by alkali activation of natural zeolite followed by acid leaching and ion exchange. The cobalt catalysts were synthesised by a different deposition technique (direct ion exchange (DIE) and incipient wetness impregnation (IWI) method of cobalt on zeolite foams. For comparison, catalysts on selected supports were prepared and the properties of all were compared in catalytic tests in the pellet form and as crushed catalysts to determine the effect of internal diffusion. The catalysts and supports were in detail characterized by a variety of techniques. The catalyst activity strongly depended on the structure of support and synthesis procedure of a cobalt catalyst. Ion exchange method provided active phase with higher surface areas and sites with better reducibility, both of these factors contributed to higher N2 O conversions of more than 80% at 450◦ C. A large influence can also be attributed to the presence of alkali metals, in particular, potassium, which resulted in a modification of electronic and acid base properties of the cobalt oxide phase on the catalyst surface. The promotional effect of potassium is better reducibility of cobalt species.
2020
10
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/5058781
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? ND
social impact