We present femtosecond pump-probe spectroscopy studies of time-resolved optical reflectivity of all-oxide YBa2Cu3O7/La0.7Sr0.3MnO3 (YBCO/LSMO) superconductor/ferromagnet (S/F) bilayers consisting of a 100-nm-thick YBCO base layer and either 10 or 35 nm LSMO cap thickness. At temperatures far below the YBCO superconducting transition TC, samples with a 10 nm F overlayer show a photoresponse that is similar to, but faster than, pure-YBCO, 100-nm-thick reference samples, while close to TC and above (up to ∼160 K) we observe a signature of both the electronic and spin response that cannot be interpreted as an incoherent sum of contributions from the two layers. The photoresponse of the S/F structures with the 35-nm LSMO layer always qualitatively follows that of the pure LSMO, but with a shorter relaxation time. In all cases, the YBCO/LSMO nonequilibrium dynamics can be modeled using a generalized multitemperature model, which is a superposition of the dynamics of the three-temperature models that are used to describe the superconductor and ferromagnet subsystems, respectively. The long term of the photoresponse signal of the S/F bilayer can be well fitted with the two characteristic relaxation times. © 2013 American Physical Society.

Time-resolved optical response of all-oxide YBa2Cu3O7/La0.7Sr0.3MnO3 proximitized bilayers

Arpaia R.;
2013-01-01

Abstract

We present femtosecond pump-probe spectroscopy studies of time-resolved optical reflectivity of all-oxide YBa2Cu3O7/La0.7Sr0.3MnO3 (YBCO/LSMO) superconductor/ferromagnet (S/F) bilayers consisting of a 100-nm-thick YBCO base layer and either 10 or 35 nm LSMO cap thickness. At temperatures far below the YBCO superconducting transition TC, samples with a 10 nm F overlayer show a photoresponse that is similar to, but faster than, pure-YBCO, 100-nm-thick reference samples, while close to TC and above (up to ∼160 K) we observe a signature of both the electronic and spin response that cannot be interpreted as an incoherent sum of contributions from the two layers. The photoresponse of the S/F structures with the 35-nm LSMO layer always qualitatively follows that of the pure LSMO, but with a shorter relaxation time. In all cases, the YBCO/LSMO nonequilibrium dynamics can be modeled using a generalized multitemperature model, which is a superposition of the dynamics of the three-temperature models that are used to describe the superconductor and ferromagnet subsystems, respectively. The long term of the photoresponse signal of the S/F bilayer can be well fitted with the two characteristic relaxation times. © 2013 American Physical Society.
File in questo prodotto:
File Dimensione Formato  
PhysRevB.87.134514.pdf

non disponibili

Tipologia: Versione dell'editore
Licenza: Copyright dell'editore
Dimensione 711.71 kB
Formato Adobe PDF
711.71 kB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/5058342
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 20
social impact