We use resonant inelastic x-ray scattering (RIXS) to investigate the magnetic dynamics of the infinite-layer cuprate CaCuO2. We find that close to the (1/2,0) point, the single magnon decays into a broad continuum of excitations accounting for about 80% of the total magnetic spectral weight. Polarization-resolved RIXS spectra reveal the overwhelming dominance of the spin-flip (?S=1) character of this continuum with respect to the ?S=0 multimagnon contributions. Moreover, its incident-energy dependence is identical to that of the magnon, supporting a common physical origin. We propose that the continuum originates from the decay of the magnon into spinon pairs, and we relate it to the exceptionally high ring exchange Jc~J1 of CaCuO2. In the infinite-layer cuprates, long-range and multisite hopping integrals are very important, and they amplify the 2D quantum magnetism effects in spite of the 3D antiferromagnetic Néel order.

Fractional Spin Excitations in the Infinite-Layer Cuprate CaCuO2

Arpaia R.;
2022-01-01

Abstract

We use resonant inelastic x-ray scattering (RIXS) to investigate the magnetic dynamics of the infinite-layer cuprate CaCuO2. We find that close to the (1/2,0) point, the single magnon decays into a broad continuum of excitations accounting for about 80% of the total magnetic spectral weight. Polarization-resolved RIXS spectra reveal the overwhelming dominance of the spin-flip (?S=1) character of this continuum with respect to the ?S=0 multimagnon contributions. Moreover, its incident-energy dependence is identical to that of the magnon, supporting a common physical origin. We propose that the continuum originates from the decay of the magnon into spinon pairs, and we relate it to the exceptionally high ring exchange Jc~J1 of CaCuO2. In the infinite-layer cuprates, long-range and multisite hopping integrals are very important, and they amplify the 2D quantum magnetism effects in spite of the 3D antiferromagnetic Néel order.
2022
12
File in questo prodotto:
File Dimensione Formato  
PhysRevX.12.021041.pdf

accesso aperto

Tipologia: Versione dell'editore
Licenza: Creative commons
Dimensione 2.35 MB
Formato Adobe PDF
2.35 MB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/5057527
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 10
social impact